Ocean–Atmosphere Coupling in the Monsoon Intraseasonal Oscillation: A Simple Model Study

Gilles Bellon Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Gilles Bellon in
Current site
Google Scholar
PubMed
Close
,
Adam H. Sobel Department of Applied Physics and Applied Mathematics, and Department of Earth and Environmental Science, Columbia University, New York, New York

Search for other papers by Adam H. Sobel in
Current site
Google Scholar
PubMed
Close
, and
Jerome Vialard Institut de Recherche pour le Développement, Laboratoire d’Océanographie–Expérimentation et Approches Numériques, Institut Pierre-Simon Laplace, Université Pierre et Marie Curie, Paris, France

Search for other papers by Jerome Vialard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A simple coupled model is used in a zonally symmetric aquaplanet configuration to investigate the effect of ocean–atmosphere coupling on the Asian monsoon intraseasonal oscillation. The model consists of a linear atmospheric model of intermediate complexity based on quasi-equilibrium theory coupled to a simple, linear model of the upper ocean. This model has one unstable eigenmode with a period in the 30–60-day range and a structure similar to the observed northward-propagating intraseasonal oscillation in the Bay of Bengal/west Pacific sector.

The ocean–atmosphere coupling is shown to have little impact on either the growth rate or latitudinal structure of the atmospheric oscillation, but it reduces the oscillation’s period by a quarter. At latitudes corresponding to the north of the Indian Ocean, the sea surface temperature (SST) anomalies lead the precipitation anomalies by a quarter of a period, similarly to what has been observed in the Bay of Bengal. The mixed layer depth is in phase opposition to the SST: a monsoon break corresponds to both a warming and a shoaling of the mixed layer. This behavior results from the similarity between the patterns of the predominant processes: wind-induced surface heat flux and wind stirring.

The instability of the seasonal monsoon flow is sensitive to the seasonal mixed layer depth: the oscillation is damped when the oceanic mixed layer is thin (about 10 m deep or thinner), as in previous experiments with several models aimed at addressing the boreal winter Madden–Julian oscillation. This suggests that the weak thermal inertia of land might explain the minima of intraseasonal variance observed over the Asian continent.

Corresponding author address: Gilles Bellon, Columbia University, Lamont Campus, 61 Route 9W, Monell Building, Palisades, NY 10964–8000. Email: gilles@iri.columbia.edu

Abstract

A simple coupled model is used in a zonally symmetric aquaplanet configuration to investigate the effect of ocean–atmosphere coupling on the Asian monsoon intraseasonal oscillation. The model consists of a linear atmospheric model of intermediate complexity based on quasi-equilibrium theory coupled to a simple, linear model of the upper ocean. This model has one unstable eigenmode with a period in the 30–60-day range and a structure similar to the observed northward-propagating intraseasonal oscillation in the Bay of Bengal/west Pacific sector.

The ocean–atmosphere coupling is shown to have little impact on either the growth rate or latitudinal structure of the atmospheric oscillation, but it reduces the oscillation’s period by a quarter. At latitudes corresponding to the north of the Indian Ocean, the sea surface temperature (SST) anomalies lead the precipitation anomalies by a quarter of a period, similarly to what has been observed in the Bay of Bengal. The mixed layer depth is in phase opposition to the SST: a monsoon break corresponds to both a warming and a shoaling of the mixed layer. This behavior results from the similarity between the patterns of the predominant processes: wind-induced surface heat flux and wind stirring.

The instability of the seasonal monsoon flow is sensitive to the seasonal mixed layer depth: the oscillation is damped when the oceanic mixed layer is thin (about 10 m deep or thinner), as in previous experiments with several models aimed at addressing the boreal winter Madden–Julian oscillation. This suggests that the weak thermal inertia of land might explain the minima of intraseasonal variance observed over the Asian continent.

Corresponding author address: Gilles Bellon, Columbia University, Lamont Campus, 61 Route 9W, Monell Building, Palisades, NY 10964–8000. Email: gilles@iri.columbia.edu

Save
  • Bellenger, H., and J-P. Duvel, 2007: Intraseasonal convective perturbations related to the seasonal march of the Indo-Pacific monsoons. J. Climate, 20 , 28532863.

    • Search Google Scholar
    • Export Citation
  • Bellon, G., and A. H. Sobel, 2008a: Poleward-propagating intraseasonal monsoon disturbances in an intermediate-complexity axisymmetric model. J. Atmos. Sci., 65 , 470489.

    • Search Google Scholar
    • Export Citation
  • Bellon, G., and A. H. Sobel, 2008b: Instability of the axisymmetric monsoon flow and intraseasonal oscillation. J. Geophys. Res., 113 .D07108, doi:10.1029/2007JD009291.

    • Search Google Scholar
    • Export Citation
  • Bhat, G. S., and Coauthors, 2001: BOBMEX: The Bay of Bengal Monsoon Experiment. Bull. Amer. Meteor. Soc., 82 , 22172243.

  • Bretherton, C. S., and A. H. Sobel, 2002: A simple model of a convectively coupled walker circulation using the weak temperature gradient approximation. J. Climate, 15 , 29072919.

    • Search Google Scholar
    • Export Citation
  • Chatterjee, P., and B. N. Goswami, 2004: Structure, genesis and scale selection of the tropical quasi-biweekly mode. Quart. J. Roy. Meteor. Soc., 130 , 11711194.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17 , 26882701.

  • Dai, A. G., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19 , 46054630.

  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109 .C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Drbohlav, H-K., and B. Wang, 2005: Mechanism of the northward-propagating intraseasonal oscillation: Insights from a zonally symmetric model. J. Climate, 18 , 952972.

    • Search Google Scholar
    • Export Citation
  • Duvel, J-P., and J. Vialard, 2007: Indo-Pacific sea surface temperature perturbations associated with intraseasonal oscillations of tropical convection. J. Climate, 20 , 30563082.

    • Search Google Scholar
    • Export Citation
  • Duvel, J-P., R. Roca, and J. Vialard, 2004: Ocean mixed layer temperature variations induced by intraseasonal convective perturbations over the Indian Ocean. J. Atmos. Sci., 61 , 10041023.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niller, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci., 54 , 23732386.

    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 2004a: The boreal-summer intraseasonal oscillations simulated in a hybrid coupled atmosphere–ocean model. Mon. Wea. Rev., 132 , 26282649.

    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 2004b: Differences of boreal-summer intraseasonal oscillations simulated in an atmosphere–ocean coupled model and an atmosphere-only model. J. Climate, 17 , 12631271.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, D. E. Waliser, and L. Tao, 2007: Impact of atmosphere–ocean coupling on the predictability of monsoon intraseasonal oscillations. J. Atmos. Sci., 64 , 157174.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 2005: South Asian monsoon. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds., Springer, 19–61.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and J. Shukla, 1984: Quasi-periodic oscillations in a symmetric general circulation model. J. Atmos. Sci., 41 , 2037.

  • Hendon, H. H., 2000: Impact of air–sea coupling on the Madden–Julian oscillation in a general circulation model. J. Atmos. Sci., 57 , 39393952.

    • Search Google Scholar
    • Export Citation
  • Inness, P. M., and J. M. Slingo, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part I: Comparison with observations and an atmosphere-only GCM. J. Climate, 16 , 345364.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17 , 10221039.

    • Search Google Scholar
    • Export Citation
  • Kang, I. S., and Coauthors, 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dyn., 19 , 383395.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., B. Wang, and X. H. Fu, 2002: Simulation of the intraseasonal oscillation in the ECHAM-4 model: The impact of coupling with an ocean model. J. Atmos. Sci., 59 , 14331453.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., D. B. Chelton, and R. A. de Szoeke, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr., 27 , 19461966.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and P. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59 , 15931606.

    • Search Google Scholar
    • Export Citation
  • Lin, J., and B. E. Mapes, 2004: Radiation budget of the tropical intraseasonal oscillations. J. Atmos. Sci., 61 , 20502062.

  • Maloney, E., and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17 , 43684386.

    • Search Google Scholar
    • Export Citation
  • Moshonkin, S. M., and L. Harenduprakash, 1991: Effect of salinity and transparency on the mixed layer thermal structure in the Bay of Bengal. Oceanology, 31 , 276.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—Formulation. J. Atmos. Sci., 57 , 17411766.

  • Neelin, J. D., C. Chou, and H. Su, 2003: Tropical drought regions in global warming and El Niño teleconnections. Geophys. Res. Lett., 30 .2275, doi:10.1029/2003GL018625.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., and E. B. Kraus, 1977: One-dimensional models of the upper ocean. Modeling and Prediction of the Upper Layers of the Ocean, E. B. Kraus, Ed., Pergamon Press, 143–172.

    • Search Google Scholar
    • Export Citation
  • Rajendran, K., and A. Kitoh, 2006: Modulation of tropical intraseasonal oscillations by ocean–atmosphere coupling. J. Climate, 19 , 366391.

    • Search Google Scholar
    • Export Citation
  • Rajendran, K., A. Kitoh, and O. Arakawa, 2004: Monsoon low-frequency intraseasonal oscillation and ocean-atmosphere coupling over the Indian Ocean. Geophys. Res. Lett., 31 .L02210, doi:10.1029/2003GL019031.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science, 243 , 5763.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2000: The Hadley circulation as a radiative–convective instability. J. Atmos. Sci., 57 , 12861297.

  • Roxy, M., and Y. Tanimoto, 2007: Role of SST over the Indian Ocean in influencing the intraseasonal variability of the Indian summer monsoon. J. Meteor. Soc. Japan, 85 , 349358.

    • Search Google Scholar
    • Export Citation
  • Sengupta, D., B. N. Goswami, and R. Senan, 2001: Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon. Geophys. Res. Lett., 28 , 41274130.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., and H. H. Hendon, 1998: Mixed layer modeling of intraseasonal variability in the tropical western Pacific and Indian Oceans. J. Climate, 11 , 26682685.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., and H. H. Hendon, 2001: Upper-ocean heat budget in response to the Madden–Julian oscillation in the western equatorial Pacific. J. Climate, 14 , 41474165.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and J. Glick, 1998: Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. J. Climate, 11 , 16821702.

    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian longitude during southwest monsoon. Mon. Wea. Rev., 108 , 18401853.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and H. Gildor, 2003: A simple time-dependent model of SST hot spots. J. Climate, 16 , 39783992.

  • Sobel, A. H., and J. D. Neelin, 2006: The boundary layer contribution to intertropical convergence zones in the quasi-equilibrium tropical circulation model framework. Theor. Comput. Fluid Dyn., 20 , 323350.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., C. S. Bretherton, H. Gildor, and M. E. Peters, 2004: Convection, cloud-radiative feedbacks and thermodynamic ocean coupling in simple models of the walker circulation. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 393–405.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and D. E. Harrison, 2002: Monsoon break and subseasonal sea surface temperature variability in the Bay of Bengal. J. Climate, 15 , 14851493.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2003: AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dyn., 21 , 423446.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., R. Murtugudde, and L. E. Lucas, 2004: Indo-Pacific ocean response to atmospheric intraseasonal variability: 2. Boreal summer and the intraseasonal oscillation. J. Geophys. Res., 109 .C03030, doi:10.1029/2003JC002002.

    • Search Google Scholar
    • Export Citation
  • Wang, B., P. J. Webster, K. Kikuchi, T. Yasunari, and Y. Qi, 2006: Boreal summer quasi-monthly oscillation in the global tropics. Climate Dyn., 27 , 661675.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2002: The sensitivity of subannual and intraseasonal tropical variability to model ocean mixed layer depth. J. Geophys. Res., 107 .4020, doi:10.1029/2001JD000671.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., and J. Syktus, 2007: The influence of air–sea interaction on the Madden–Julian oscillation: The role of the seasonal mean state. Climate Dyn., 28 , 703722.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1983: Mechanism of monsoon low-frequency variability: Surface hydrological effects. J. Atmos. Sci., 40 , 21102124.

  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2000: The relationship between convection and sea surface temperature on intraseasonal timescales. J. Climate, 13 , 20862104.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., F. Vitart, and M. A. Balmaseda, 2007: The role of the ocean in the Madden–Julian oscillation: Implications for MJO prediction. Quart. J. Roy. Meteor. Soc., 133 , 117128.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., J. D. Neelin, and C. Chou, 2000: A quasi-equilibrium tropical circulation model—Implementation and simulation. J. Atmos. Sci., 57 , 17671796.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., D. E. Waliser, W. F. Stern, and C. Jones, 2004: The role of coupled sea surface temperatures in the simulation of the tropical intraseasonal oscillation. J. Climate, 17 , 41094134.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 349 94 6
PDF Downloads 181 62 4