Decadal Modulation of ENSO in a Hybrid Coupled Model

Robert J. Burgman University of Miami, Miami, Florida

Search for other papers by Robert J. Burgman in
Current site
Google Scholar
PubMed
Close
,
Paul S. Schopf George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Paul S. Schopf in
Current site
Google Scholar
PubMed
Close
, and
Ben P. Kirtman University of Miami, Miami, Florida, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Ben P. Kirtman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Decadal variations in the amplitude of El Niño and the Southern Oscillation have been the subject of great interest in the literature for the past decade. One theory suggests that ENSO is best described as a stable system driven by linear dynamics and that stochastic atmospheric forcing is responsible for the development and modulation of ENSO on interannual as well as decadal time scales. Another theory suggests that ENSO is driven by strong nonlinear coupled feedbacks between the ocean and atmosphere and low frequency changes in ENSO amplitude are driven by decadal changes in the tropical Pacific mean state. Unfortunately, the observed record is too short to collect reliable statistics for such low frequency behavior. A hybrid coupled model composed of a simple statistical atmosphere coupled to the Poseidon isopycnal ocean model has been developed for the study of ENSO decadal variability. The model simulates realistic ENSO variability on interannual and decadal time scales with negligible climate drift over 1000 years. Through analysis and experimentation the authors show that low frequency changes in the atmospheric “weather noise” drive changes in the tropical Pacific mean state leading to changes in the amplitude of ENSO on decadal time scales. Additional model simulations suggest that, while predictability is limited by the presence of atmospheric noise, there are extended periods when the coupled instability, strengthened by changes in the mean state, is insensitive to noise on interannual time scales.

The relationship between decadal modulation of ENSO and mean state changes resides somewhere between the linear damped stochastically forced theory and the strongly unstable theory. Unlike the strongly unstable system, changes in ENSO amplitude on longer time scales are determined by the stochastic forcing. The stochastic forcing is not necessary in this model to sustain ENSO; however, its presence is crucial for low frequency changes in the mean state of the tropical Pacific. The strong relationship between the mean state and ENSO amplitude modulation in the model is in opposition to the linear damped stochastically forced theory. The fact that changes in the tropical Pacific mean state lead directly to changes in ENSO amplitude and predictability has positive implications for predictability.

Corresponding author address: Robert Burgman, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: rburgman@rsmas.miami.edu

Abstract

Decadal variations in the amplitude of El Niño and the Southern Oscillation have been the subject of great interest in the literature for the past decade. One theory suggests that ENSO is best described as a stable system driven by linear dynamics and that stochastic atmospheric forcing is responsible for the development and modulation of ENSO on interannual as well as decadal time scales. Another theory suggests that ENSO is driven by strong nonlinear coupled feedbacks between the ocean and atmosphere and low frequency changes in ENSO amplitude are driven by decadal changes in the tropical Pacific mean state. Unfortunately, the observed record is too short to collect reliable statistics for such low frequency behavior. A hybrid coupled model composed of a simple statistical atmosphere coupled to the Poseidon isopycnal ocean model has been developed for the study of ENSO decadal variability. The model simulates realistic ENSO variability on interannual and decadal time scales with negligible climate drift over 1000 years. Through analysis and experimentation the authors show that low frequency changes in the atmospheric “weather noise” drive changes in the tropical Pacific mean state leading to changes in the amplitude of ENSO on decadal time scales. Additional model simulations suggest that, while predictability is limited by the presence of atmospheric noise, there are extended periods when the coupled instability, strengthened by changes in the mean state, is insensitive to noise on interannual time scales.

The relationship between decadal modulation of ENSO and mean state changes resides somewhere between the linear damped stochastically forced theory and the strongly unstable theory. Unlike the strongly unstable system, changes in ENSO amplitude on longer time scales are determined by the stochastic forcing. The stochastic forcing is not necessary in this model to sustain ENSO; however, its presence is crucial for low frequency changes in the mean state of the tropical Pacific. The strong relationship between the mean state and ENSO amplitude modulation in the model is in opposition to the linear damped stochastically forced theory. The fact that changes in the tropical Pacific mean state lead directly to changes in ENSO amplitude and predictability has positive implications for predictability.

Corresponding author address: Robert Burgman, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: rburgman@rsmas.miami.edu

Save
  • An, S-I., and F-F. Jin, 2000: An eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophys. Res. Lett., 27 , 25732576.

    • Search Google Scholar
    • Export Citation
  • An, S-I., and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13 , 20442055.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., D. W. Pierce, M. Latif, D. Dommmenget, and R. Saravanan, 1999: Interdecadal interactions between the tropics and midlatitudes in the Pacific basin. Geophys. Res. Lett., 26 , 615618.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46 , 16871712.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., J. D. Neelin, and D. Gutzler, 1997: Estimating the effect of stochastic wind forcing on ENSO irregularity. J. Climate, 10 , 14731486.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., and D. B. Stephenson, 1999: The normality of El Niño. Geophys. Res. Lett., 26 , 10271030.

  • Burgman, R. J., 2006: ENSO decadal variability. Ph.D. thesis, George Mason University.

  • Carton, J. A., and B. Huang, 1994: Warm events in the tropical Atlantic. J. Phys. Oceanogr., 24 , 888903.

  • Eckert, C., and M. Latif, 1997: Predictability of a stochastically forced hybrid coupled model of El Niño. J. Climate, 10 , 14881504.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and S. G. H. Philander, 2000: Is El Niño changing? Science, 288 , 19972002.

  • Fedorov, A. V., and S. G. H. Philander, 2001: A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14 , 30863101.

    • Search Google Scholar
    • Export Citation
  • Flügel, M., and P. Chang, 1999: Stochastically induced climate shift of El Niño–Southern Oscillation phenomenon. Geophys. Res. Lett., 26 , 16. 24732476.

    • Search Google Scholar
    • Export Citation
  • Flügel, M., P. Chang, and C. Penland, 2004: The role of stochastic forcing in modulating ENSO predictability. J. Climate, 17 , 31253140.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and D. S. Battisti, 1999: Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J. Climate, 12 , 21132123.

    • Search Google Scholar
    • Export Citation
  • Goswami, B., and J. Shukla, 1991: Predictability of a coupled ocean–atmosphere model. J. Climate, 4 , 322.

  • Gu, D., and S. Philander, 1995: Secular changes of annual and interannual variability in the tropics during the past century. J. Climate, 8 , 864876.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275 , 805807.

    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1 , 241248.

  • Hasselmann, K., 1976: Stochastic climate models: I. Theory. Tellus, 28 , 473485.

  • Huang, B., and J. Shukla, 1996: A comparison of two surface wind stress analyses over the tropical Atlantic during 1980–1987. J. Climate, 9 , 906927.

    • Search Google Scholar
    • Export Citation
  • Huang, B., J. A. Carton, and J. Shukla, 1995: A numerical simulation of the variability in the tropical Atlantic Ocean, 1980–88. J. Phys. Oceanogr., 25 , 835854.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 2001: Low-frequency modes of tropical ocean dynamics. J. Climate, 14 , 38743881.

  • Jin, F-F., J. D. Neelin, and M. Ghil, 1994: El Niño on the Devil’s Staircase: Annual subharmonic steps to chaos. Science, 264 , 7072.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., S-I. An, A. Timmermann, and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30 .1120, doi:10.1029/2002GL016356.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., 1997: Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Climate, 10 , 16901704.

  • Kirtman, B. P., and P. S. Schopf, 1998: Decadal variability of ENSO predictability and prediction. J. Climate, 11 , 28042822.

  • Kirtman, B. P., and J. Shukla, 2002: Interactive coupled ensemble: A new coupling strategy for CGCMS. Geophys. Res. Lett., 29 .1367, doi:10.1029/2002GL014834.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., and A. M. Moore, 1997: A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sci., 54 , 753767.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., J. P. McCreary, and B. A. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophys. Res. Lett., 26 , 17431746.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1998: Model assessment of decadal variability and trends in the tropical Pacific Ocean. J. Climate, 11 , 22732296.

    • Search Google Scholar
    • Export Citation
  • Latif, M., 1998: Dynamics of interdecadal variability in coupled ocean–atmosphere models. J. Climate, 11 , 26612673.

  • Mitchell, T. P., and J. M. Wallace, 1996: ENSO seasonality: 1950–78 versus 1979–92. J. Climate, 9 , 31493161.

  • Moore, A. M., and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Quart. J. Roy. Meteor. Soc., 122 , 14051446.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999a: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12 , 11991220.

  • Moore, A. M., and R. Kleeman, 1999b: The nonnormal nature of El Niño and intraseasonal variability. J. Climate, 12 , 29652982.

  • Münnich, M., M. A. Cane, and S. E. Zebiak, 1991: A study of self-excited oscillations in a tropical ocean–atmosphere system. Part II: Nonlinear cases. J. Atmos. Sci., 48 , 12381248.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., and S. Yamada, 1989: Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J. Meteor. Soc. Japan, 67 , 375383.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8 , 19992024.

  • Pierce, D. W., T. P. Barnett, and M. Latif, 2000: Connections between the Pacific Ocean tropics and midlatitudes on decadal timescales. J. Climate, 13 , 11731194.

    • Search Google Scholar
    • Export Citation
  • Ping, C., J. Link, L. Hong, and M. Flugal, 1996: Chaotic dynamics versus stochastic processes in El Niño–Southern Oscillation in coupled ocean–atmosphere models. Physica D, 98 , 301320.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., P. Friederichs, and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J. Climate, 17 , 37613774.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., and M. Fan, 2007: Weather noise forcing of surface climate variability. J. Atmos. Sci., 64 , 32653280.

  • Schneider, N., A. J. Miller, M. A. Alexander, and C. Deser, 1999: Subduction of decadal North Pacific Temperature anomalies: Observations and dynamics. J. Phys. Oceanogr., 29 , 10561070.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and M. J. Suarez, 1988: Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci., 45 , 549568.

  • Schopf, P. S., and A. Loughe, 1995: A reduced-gravity isopycnal ocean model: Hindcasts of El Niño. Mon. Wea. Rev., 123 , 28392863.

  • Schopf, P. S., and R. J. Burgman, 2006: A simple mechanism for ENSO residuals and asymmetry. J. Climate, 19 , 31673179.

  • Smith, T. M., R. W. Reynolds, R. E. Livezey, and D. C. Stokes, 1996: Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J. Climate, 9 , 14031420.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., J. P. J. McCreary Jr., R. Kleeman, and B. A. Klinger, 2003: Interannual and decadal variability in an intermediate coupled model of the Pacific Region. J. Climate, 16 , 383405.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., and D. S. Battisti, 2001: A linear stochastic dynamical model of ENSO. Part II: Analysis. J. Climate, 14 , 445466.

  • Timmermann, A., F-F. Jin, and J. Abshagen, 2003: A nonlinear theory for El Niño bursting. J. Atmos. Sci., 60 , 152165.

  • Trenberth, K. E., 1990: Recent observed interdecadal climate changes in the Northern Hemisphere. Bull. Amer. Meteor. Soc., 71 , 988993.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., W. G. Large, and J. G. Olson, 1990: The mean annual cycle in global ocean wind stress. J. Phys. Oceanogr., 20 , 17421760.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., L. Stone, M. A. Cane, and H. Jarosh, 1994: El Niño and chaos: Overlapping of resonances between the seasonal cycle and the Pacific Ocean–atmosphere oscillator. Science, 264 , 7274.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1995: Interdecadal changes in El Niño onset in the last four decades. J. Climate, 8 , 267285.

  • Wang, B., and Y. Wang, 1996: Temporal structure of the Southern Oscillation as revealed by waveform and wavelet analysis. J. Climate, 9 , 15861598.

    • Search Google Scholar
    • Export Citation
  • Webster, P., and S. Yang, 1992: Monsoon and ENSO: Selectively Interactive systems. Quart. J. Roy. Meteor. Soc., 118 , 877926.

  • Whitlock, C., and Coauthors, 1995: First global WCRP shortwave surface radiation budget dataset. Bull. Amer. Meteor. Soc., 76 , 905922.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., and B. P. Kirtman, 2004: Tropical Pacific decadal variability and ENSO amplitude modulation in a CGCM. J. Geophys. Res., 109 .C11009, doi:10.1029/2004JC002442.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., and B. P. Kirtman, 2005: Pacific decadal variability and decadal ENSO amplitude modulation. Geophys. Res. Lett., 32 .L05703, doi:10.1029/2004GL021731.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., J-G. Jhun, I-S. Kang, and B. P. Kirtman, 2004: The decadal ENSO variability in a hybrid coupled model. J. Climate, 17 , 12251238.

    • Search Google Scholar
    • Export Citation
  • Yu, Z., and P. S. Schopf, 1997: Vertical eddy mixing in the tropical upper ocean: Its influence on zonal currents. J. Phys. Oceanogr., 27 , 14471458.

    • Search Google Scholar
    • Export Citation
  • Zavala-Garay, J., A. M. Moore, C. L. Perez, and R. Kleeman, 2003: The response of a coupled model of ENSO to observed estimates of stochastic forcing. J. Climate, 16 , 28272842.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1989: On the 30–60 day oscillation and the prediction of El Niño. J. Climate, 2 , 13811387.

  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 282 62 0
PDF Downloads 152 43 0