On Multidecadal Variability of the Atlantic Meridional Overturning Circulation in the Community Climate System Model Version 3

Gokhan Danabasoglu National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Gokhan Danabasoglu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Multidecadal variability of the Atlantic meridional overturning circulation (MOC) is investigated diagnostically in the NCAR Community Climate System Model version 3 (CCSM3) present-day simulations, using the highest (T85 × 1) resolution version. This variability has a 21-yr period and is present in many other ocean fields in the North Atlantic. In MOC, the oscillation amplitude is about 4.5 Sv (1 Sv ≡ 106 m3 s−1), corresponding to 20% of the mean maximum MOC transport. The northward heat transport (NHT) variability has an amplitude of about 0.12 PW, representing 10% of the mean maximum NHT. In sea surface temperature (SST) and sea surface salinity (SSS), the peak-to-peak changes can be as large as 6°–7°C and 3 psu, respectively. The Labrador Sea region is identified as the deep-water formation (DWF) site associated with the MOC oscillations. In contrast with some previous studies, temperature and salinity contributions to the total density in this DWF region are almost equal and in phase. The heat and freshwater budget analyses performed for the DWF site indicate a complex relationship between the DWF, MOC, North Atlantic Oscillation (NAO), and subpolar gyre circulation anomalies. Their complicated interactions appear to be responsible for the maintenance of this multidecadal oscillation. In these interactions, the atmospheric variability associated with the model’s NAO plays a prominent role. In particular, the NAO modulates the subpolar gyre strength and contributes to the formation of the temperature and salinity anomalies that lead to positive/negative density anomalies at the DWF site. In addition, the wind stress curl anomalies occurring during the transition phase between the positive and negative NAO states produce fluctuations of the subtropical–subpolar gyre boundary, thus creating midlatitude SST and SSS anomalies. Comparisons with observations show that neither the pattern nor the magnitude of this dominant SST variability is realistic.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Gokhan Danabasoglu, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: gokhan@ucar.edu

Abstract

Multidecadal variability of the Atlantic meridional overturning circulation (MOC) is investigated diagnostically in the NCAR Community Climate System Model version 3 (CCSM3) present-day simulations, using the highest (T85 × 1) resolution version. This variability has a 21-yr period and is present in many other ocean fields in the North Atlantic. In MOC, the oscillation amplitude is about 4.5 Sv (1 Sv ≡ 106 m3 s−1), corresponding to 20% of the mean maximum MOC transport. The northward heat transport (NHT) variability has an amplitude of about 0.12 PW, representing 10% of the mean maximum NHT. In sea surface temperature (SST) and sea surface salinity (SSS), the peak-to-peak changes can be as large as 6°–7°C and 3 psu, respectively. The Labrador Sea region is identified as the deep-water formation (DWF) site associated with the MOC oscillations. In contrast with some previous studies, temperature and salinity contributions to the total density in this DWF region are almost equal and in phase. The heat and freshwater budget analyses performed for the DWF site indicate a complex relationship between the DWF, MOC, North Atlantic Oscillation (NAO), and subpolar gyre circulation anomalies. Their complicated interactions appear to be responsible for the maintenance of this multidecadal oscillation. In these interactions, the atmospheric variability associated with the model’s NAO plays a prominent role. In particular, the NAO modulates the subpolar gyre strength and contributes to the formation of the temperature and salinity anomalies that lead to positive/negative density anomalies at the DWF site. In addition, the wind stress curl anomalies occurring during the transition phase between the positive and negative NAO states produce fluctuations of the subtropical–subpolar gyre boundary, thus creating midlatitude SST and SSS anomalies. Comparisons with observations show that neither the pattern nor the magnitude of this dominant SST variability is realistic.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Gokhan Danabasoglu, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: gokhan@ucar.edu

Save
  • Alexander, M., and Coauthors, 2006: Extratropical atmosphere–ocean variability in CCSM3. J. Climate, 19 , 24962525.

  • Bjerknes, J., 1964: Atlantic air-sea interaction. Adv. Geophys., 10 , 182.

  • Briegleb, B. P., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E. Moritz, 2004: Scientific description of the sea ice component in the Community Climate System Model, version 3. NCAR Tech. Note NCAR-TN-463+STR, 70 pp.

  • Bryan, F. O., G. Danabasoglu, N. Nakashiki, Y. Yoshida, D. H. Kim, J. Tsutsui, and S. C. Doney, 2006: Response of North Atlantic thermohaline circulation and ventilation to increasing carbon dioxide in CCSM3. J. Climate, 19 , 23822397.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., and S. Imawaki, 2001: Ocean heat transport. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 455–474.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and W. R. Holland, 1997: Decadal variability in an idealized ocean model and its sensitivity to surface boundary conditions. J. Phys. Oceanogr., 27 , 10721093.

    • Search Google Scholar
    • Export Citation
  • Cheng, W., R. Bleck, and C. Rooth, 2004: Multi-decadal thermohaline variability in an ocean-atmosphere general circulation model. Climate Dyn., 22 , 573590.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdiere, A., and T. Huck, 1999: Baroclinic instability: An oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr., 29 , 893910.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006a: The Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Collins, W. D., and Coauthors, 2006b: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Dai, A., A. Hu, G. A. Meehl, W. M. Washington, and W. G. Strand, 2005: Atlantic thermohaline circulation in a coupled general circulation model: Unforced variations versus forced changes. J. Climate, 18 , 32703293.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., 1998: On the wind driven circulation of the uncoupled and coupled NCAR climate system ocean model. J. Climate, 11 , 14441456.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., W. G. Large, J. J. Tribbia, P. R. Gent, B. P. Briegleb, and J. C. Mc Williams, 2006: Diurnal coupling in the tropical oceans of CCSM3. J. Climate, 19 , 23472365.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and R. J. Greatbatch, 2000: Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Climate, 13 , 14811495.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16 , 661676.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J. Climate, 6 , 19932011.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., S. Manabe, and R. J. Stouffer, 1997: Multidecadal climate variability in the Greenland Sea and surrounding regions: A coupled model simulation. Geophys. Res. Lett., 24 , 257260.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Climate, 6 , 17431753.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., K. W. Oleson, G. Bonan, F. Hoffman, P. Thornton, M. Vertenstein, Z. L. Yang, and X. Zeng, 2006: The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate, 19 , 23022324.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., L. te Raa, M. Schmeits, and J. Gerrits, 2006: On the physics of the Atlantic Multidecadal Oscillation. Ocean Dyn., 56 , 3650.

    • Search Google Scholar
    • Export Citation
  • Dong, B., and R. T. Sutton, 2005: Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmosphere GCM. J. Climate, 18 , 11171135.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and J. Willebrand, 2001: Mechanism of interannual to decadal variability of the North Atlantic circulation. J. Climate, 14 , 22662280.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and S. Zhang, 1995: An interdecadal oscillation in an idealized ocean basin forced by constant heat flux. J. Climate, 8 , 8191.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and E. Tziperman, 1995: A linear thermohaline oscillator driven by stochastic atmospheric forcing. J. Climate, 8 , 24402453.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and K. Bryan, 1997: Predictability of North Atlantic multidecadal climate variability. Science, 275 , 181184.

  • Holland, M. M., 2003: The North Atlantic oscillation–Arctic oscillation in the CCSM2 and its influence on Arctic climate variability. J. Climate, 16 , 27672781.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, and J. L. Schramm, 2006: Influence of the sea ice thickness distribution on polar climate in CCSM3. J. Climate, 19 , 23982414.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., C. Deser, and M. A. Spall, 2000: The relation between decadal variability of subtropical mode water and the North Atlantic Oscillation. J. Climate, 13 , 25502569.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., H. Haak, M. Latif, and U. Mikolajewicz, 2005: Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Climate, 18 , 40134031.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7 , 141157.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y-O., and C. Deser, 2007: North Pacific decadal variability in the Community Climate System Model version 2. J. Climate, 20 , 24162433.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and G. Danabasoglu, 2006: Attribution and impacts of upper-ocean biases in CCSM3. J. Climate, 19 , 23252346.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., T. Boyer, M. Conkright, D. Johnson, T. O’Brien, J. Antonov, C. Stephens, and R. Gelfeld, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., C. Deser, and R. Saravanan, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Climate, 17 , 857876.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and W. Weng, 1999: Analytical prototypes for ocean–atmosphere interaction at midlatitudes. Part I: Coupled feedbacks as a sea surface temperature dependent stochastic process. J. Climate, 12 , 697721.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 173 pp.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and J. C. McWilliams, 1997: Stochasticity and spatial resonance in interdecadal climate fluctuations. J. Climate, 10 , 22992320.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, 2000: Decadal variability and predictability in the midlatitude ocean–atmosphere system. J. Climate, 13 , 10731097.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., and P. R. Gent, 2004: Reference manual for the Parallel Ocean Program (POP), ocean component of the Community Climate System Model (CCSM2.0 and 3.0). Los Alamos National Laboratory Tech. Rep. LA-UR-02-2484, 75 pp. [Available online at http://www.ccsm.ucar.edu/models/ccsm3.0/pop.].

  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high quality Arctic Ocean. J. Climate, 14 , 20792087.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. W., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309 , 115118.

    • Search Google Scholar
    • Export Citation
  • Taylor, A. H., and J. A. Stephens, 1998: The North Atlantic Oscillation and the latitude of the Gulf Stream. Tellus, 50A , 134142.

  • Te Raa, L. A., and H. A. Dijkstra, 2002: Instability of the thermohaline ocean circulation on interdecadal timescales. J. Phys. Oceanogr., 32 , 138160.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., M. Latif, R. Voss, and A. Grotzner, 1998: Northern Hemispheric interdecadal variability: A coupled air–sea mode. J. Climate, 11 , 19061931.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33 .L12704, doi:10.1029/2006GL026894.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34 .L07709, doi:10.1029/2007GL029683.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and E. S. Sarachik, 1991: Evidence for decadal variability in an ocean general circulation model: An advective mechanism. Atmos.–Ocean, 29 , 197231.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and S. Valcke, 1998: On the variability of the thermohaline circulation in the GFDL coupled model. J. Climate, 11 , 759767.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and G. K. Vallis, 2007: The role of bottom vortex stretching on the path of the North Atlantic western boundary current and on the northern recirculation gyre. J. Phys. Oceanogr., 37 , 20532080.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 708 428 50
PDF Downloads 243 71 7