A High-Resolution Climate Model for the U.S. Pacific Northwest: Mesoscale Feedbacks and Local Responses to Climate Change

Eric P. Salathé Jr. Climate Impacts Group, Center for Science in the Earth System, University of Washington, Seattle, Washington

Search for other papers by Eric P. Salathé Jr. in
Current site
Google Scholar
PubMed
Close
,
Richard Steed Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Richard Steed in
Current site
Google Scholar
PubMed
Close
,
Clifford F. Mass Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Clifford F. Mass in
Current site
Google Scholar
PubMed
Close
, and
Patrick H. Zahn Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Patrick H. Zahn in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Simulations of future climate scenarios produced with a high-resolution climate model show markedly different trends in temperature and precipitation over the Pacific Northwest than in the global model in which it is nested, apparently because of mesoscale processes not being resolved at coarse resolution. Present-day (1990–99) and future (2020–29, 2045–54, and 2090–99) conditions are simulated at high resolution (15-km grid spacing) using the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) system and forced by ECHAM5 global simulations. Simulations use the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 emissions scenario, which assumes a rapid increase in greenhouse gas concentrations. The mesoscale simulations produce regional alterations in snow cover, cloudiness, and circulation patterns associated with interactions between the large-scale climate change and the regional topography and land–water contrasts. These changes substantially alter the temperature and precipitation trends over the region relative to the global model result or statistical downscaling. Warming is significantly amplified through snow–albedo feedback in regions where snow cover is lost. Increased onshore flow in the spring reduces the daytime warming along the coast. Precipitation increases in autumn are amplified over topography because of changes in the large-scale circulation and its interaction with the terrain. The robustness of the modeling results is established through comparisons with the observed and simulated seasonal variability and with statistical downscaling results.

Corresponding author address: Eric P. Salathé Jr., Climate Impacts Group, Center for Science in the Earth System, University of Washington, Box 354235, Seattle, WA 98195-4235. Email: salathe@washington.edu

Abstract

Simulations of future climate scenarios produced with a high-resolution climate model show markedly different trends in temperature and precipitation over the Pacific Northwest than in the global model in which it is nested, apparently because of mesoscale processes not being resolved at coarse resolution. Present-day (1990–99) and future (2020–29, 2045–54, and 2090–99) conditions are simulated at high resolution (15-km grid spacing) using the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) system and forced by ECHAM5 global simulations. Simulations use the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 emissions scenario, which assumes a rapid increase in greenhouse gas concentrations. The mesoscale simulations produce regional alterations in snow cover, cloudiness, and circulation patterns associated with interactions between the large-scale climate change and the regional topography and land–water contrasts. These changes substantially alter the temperature and precipitation trends over the region relative to the global model result or statistical downscaling. Warming is significantly amplified through snow–albedo feedback in regions where snow cover is lost. Increased onshore flow in the spring reduces the daytime warming along the coast. Precipitation increases in autumn are amplified over topography because of changes in the large-scale circulation and its interaction with the terrain. The robustness of the modeling results is established through comparisons with the observed and simulated seasonal variability and with statistical downscaling results.

Corresponding author address: Eric P. Salathé Jr., Climate Impacts Group, Center for Science in the Earth System, University of Washington, Box 354235, Seattle, WA 98195-4235. Email: salathe@washington.edu

Save
  • Achberger, C., M. L. Linderson, and D. Chen, 2003: Performance of the Rossby Centre regional atmospheric model in southern Sweden: Comparison of simulated and observed precipitation. Theor. Appl. Climatol., 76 , 219234.

    • Search Google Scholar
    • Export Citation
  • Baxter, D. O., 1997: A comparison of deep soil temperature: Tennessee versus other locations. Trans. ASAE, 40 , 727738.

  • Christensen, J. H., and P. Kuhry, 2000: High-resolution regional climate model validation and permafrost simulation for the East European Russian Arctic. J. Geophys. Res., 105 , 2964729658.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., K. J. Westrick, and C. F. Mass, 1999: Evaluation of MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season. Wea. Forecasting, 14 , 137154.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., C. F. Mass, and K. J. Westrick, 2000: MM5 precipitation verification over the Pacific Northwest during the 1997–99 cool seasons. Wea. Forecasting, 15 , 730744.

    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res., 108 .8845, doi:10.1029/2002JD003316.

    • Search Google Scholar
    • Export Citation
  • Croke, M. S., R. D. Cess, and S. Hameed, 1999: Regional cloud cover change associated with global climate change: Case studies for three regions of the United States. J. Climate, 12 , 21282134.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., B. Govindasamy, J. P. Iorio, J. Milovich, K. R. Sperber, K. E. Taylor, M. F. Wehner, and S. L. Thompson, 2003: High-resolution simulations of global climate, Part 1: Present climate. Climate Dyn., 21 , 371390.

    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., and Coauthors, 2006: Simulations of present and future climates in the western United States with four nested regional climate models. J. Climate, 19 , 873895.

    • Search Google Scholar
    • Export Citation
  • Frei, C., C. Schär, D. Lüthi, and H. C. Davies, 1998: Heavy precipitation processes in a warmer climate. Geophys. Res. Lett., 25 , 14311434.

    • Search Google Scholar
    • Export Citation
  • Frei, C., J. H. Christensen, M. Déqué, D. Jacob, R. G. Jones, and P. L. Vidale, 2003: Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps. J. Geophys. Res., 108 .4124, doi:10.1029/2002JD002287.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and L. O. Mearns, 1999: Introduction to special section: Regional climate modeling revisited. J. Geophys. Res., 104 , 63356352.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., J. W. Hurrell, M. R. Marinucci, and M. Beniston, 1997: Elevation dependency of the surface climate change signal: A model study. J. Climate, 10 , 288296.

    • Search Google Scholar
    • Export Citation
  • Grell, G., J. Dudhia, and D. R. Stauffer, 1993: A description of the fifth generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Note NCAR/TN-398+IA, 107 pp.

  • Hack, J. J., B. A. Boville, J. P. Briegleb, J. T. Kiehl, P. J. Rasch, and D. L. Williamson, 1993: Description of the NCAR Community Climate Model (CCM2). NCAR Tech. Note NCAR/TN-883+STR, 108 pp.

  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21 , 221232.

  • Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a Medium-Range Forecast Model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., 2003: SMEX02 Soil Climate Analysis Network (SCAN) station 2031, Ames, Iowa. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/docs/daac/nsidc0142_smex_scan.gd.html.].

  • Jury, W. A., W. R. Gardner, and W. H. Gardner, 1991: Soil Physics. 5th ed. Wiley and Sons, 328 pp.

  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Karl, T. R., J. C. N. Williams, F. T. Quinlan, and T. A. Boden, 1990: United States Historical Climatology Network (HCN) serial temperature and precipitation data. Carbon Dioxide Information and Analysis Center, Oak Ridge National Laboratory, Environmental Science Division Publication 3404, 389 pp.

  • Karl, T. R., and Coauthors, 1993: A new perspective on recent global warming: Asymmetric trends of daily maximum and minimum temperature. Bull. Amer. Meteor. Soc., 74 , 10071023.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and S. J. Ghan, 1999: Pacific Northwest climate sensitivity simulated by a regional climate model driven by a GCM. Part II: 2 × CO2 simulations. J. Climate, 12 , 20312053.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Y. Qian, 2003: The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain. J. Hydrometeor., 4 , 10251043.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., Y. Qian, X. Bian, and A. Hunt, 2003: Hydroclimate of the western United States based on observations and regional climate simulation of 1981–2000. Part II: Mesoscale ENSO anomalies. J. Climate, 16 , 19121928.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., Y. Qian, X. Bian, W. M. Washington, J. Han, and J. O. Roads, 2004: Mid-century ensemble regional climate change scenarios for the western United States. Climatic Change, 62 , 75113.

    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Roske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5 , 91127.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and Y-H. Kuo, 1998: Regional real-time numerical weather prediction: Current status and future potential. Bull. Amer. Meteor. Soc., 79 , 253263.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83 , 407430.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and Coauthors, 2003: Regional environmental prediction over the Pacific Northwest. Bull. Amer. Meteor. Soc., 84 , 13531366.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier, and B. Nijssen, 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate, 15 , 32373251.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and R. Swart, 2000: Emissions Scenarios. Cambridge University Press, 599 pp.

  • Roeckner, E., L. Bengtsson, J. Feichter, J. Lelieveld, and H. Rodhe, 1999: Transient climate change simulations with a coupled atmosphere–ocean GCM including the tropospheric sulfur cycle. J. Climate, 12 , 30043032.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5, Part I: Model description. Max-Planck-Institute for Meteorology Rep. 349, 140 pp.

  • Salathé Jr., E. P., 2003: Comparison of various precipitation downscaling methods for the simulation of streamflow in a rain shadow river basin. Int. J. Climatol., 23 , 887901.

    • Search Google Scholar
    • Export Citation
  • Salathé Jr., E. P., 2005: Downscaling simulations of future global climate with application to hydrologic modeling. Int. J. Climatol., 25 , 419436.

    • Search Google Scholar
    • Export Citation
  • Salathé Jr., E. P., 2006: Influences of a shift in North Pacific storm tracks on western North American precipitation under global warming. Geophys. Res. Lett., 33 .L19820, doi:10.1029/2006GL026882.

    • Search Google Scholar
    • Export Citation
  • Salathé Jr., E. P., P. W. Mote, and M. W. Wiley, 2007: Review of scenario selection and downscaling methods for the assessment of climate change impacts on hydrology in the United States Pacific northwest. Int. J. Climatol., 27 , 16111621.

    • Search Google Scholar
    • Export Citation
  • Snyder, M. A., J. L. Bell, L. C. Sloan, P. B. Duffy, and B. Govindasamy, 2002: Climate responses to a doubling of atmospheric carbon dioxide for a climatically vulnerable region. Geophys. Res. Lett., 29 .1514, doi:10.1029/2001GL014431.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., K. Hayhoe, J. M. Arblaster, and G. A. Meehl, 2006: Going to the extremes. Climatic Change, 79 , 185211.

  • von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128 , 36643673.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. Q., L. R. Leung, J. L. McGregor, D. K. Lee, W. C. Wang, Y. H. Ding, and F. Kimura, 2004: Regional climate modeling: Progress, challenges, and prospects. J. Meteor. Soc. Japan, 82 , 15991628.

    • Search Google Scholar
    • Export Citation
  • Widmann, M., and C. S. Bretherton, 2000: Validation of mesoscale precipitation in the NCEP reanalysis using a new gridcell dataset for the northwestern United States. J. Climate, 13 , 19361950.

    • Search Google Scholar
    • Export Citation
  • Widmann, M., C. S. Bretherton, and E. P. Salathé, 2003: Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor. J. Climate, 16 , 799816.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62 , 189216.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32 .L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1215 362 28
PDF Downloads 675 179 16