On the Strong Seasonal Currents in the Deep Ocean

Oleg A. Saenko Canadian Centre for Climate Modelling and Analysis, Environment Canada, Victoria, British Columbia, Canada

Search for other papers by Oleg A. Saenko in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using a set of models, including one with a resolution of ¼°, several aspects of the simulated seasonal currents in the deep ocean are considered. It is shown that over vast areas of the deep interior, particularly in the Indian Ocean, annual-mean circulation represents a small residual of much stronger seasonal flows. In many places the seasonal horizontal velocities are of the order of 10−2 m s−1, reaching locally to 10−1 m s−1; the corresponding vertical velocities are of the order of 10−5 m s−1. An idealized geometry model is employed to confirm the notion that much of this seasonal variability in the deep-ocean circulation can be attributed to the annual cycle of wind stress, combined with the significant increase in the vertical trapping depth for basin-scale seasonal forcing. It is suggested that, at least on seasonal time scales, the so-called bottom pressure torque can be an important term in the depth-integrated vorticity balance. An interaction of these relatively strong flows (of nontidal origin) with bottom topography may contribute to diapycnal mixing in the deep ocean in a manner similar to that proposed recently for the Southern Ocean. In addition, it is found that under a plausible climate change scenario, the amplitude of the mean annual cycle of wind stress may change. Among the regions where such changes are most pronounced is that in the extratropical North Pacific. It is shown that the data on surface wind stress can be effectively used to identify the seasons with the largest changes in the deep-reaching overturning cells. Finally, unlike what might be expected from the earlier theories, the annual-mean circulation simulated by the model with ¼° resolution has the deep interior flows that tend to group into jetlike structures, often having a predominant equatorward rather than poleward direction.

Corresponding author address: Oleg A. Saenko, CCCma, 3964 Gordon Head Road, Victoria, BC V8N 3X3, Canada. Email: oleg.saenko@ec.gc.ca

Abstract

Using a set of models, including one with a resolution of ¼°, several aspects of the simulated seasonal currents in the deep ocean are considered. It is shown that over vast areas of the deep interior, particularly in the Indian Ocean, annual-mean circulation represents a small residual of much stronger seasonal flows. In many places the seasonal horizontal velocities are of the order of 10−2 m s−1, reaching locally to 10−1 m s−1; the corresponding vertical velocities are of the order of 10−5 m s−1. An idealized geometry model is employed to confirm the notion that much of this seasonal variability in the deep-ocean circulation can be attributed to the annual cycle of wind stress, combined with the significant increase in the vertical trapping depth for basin-scale seasonal forcing. It is suggested that, at least on seasonal time scales, the so-called bottom pressure torque can be an important term in the depth-integrated vorticity balance. An interaction of these relatively strong flows (of nontidal origin) with bottom topography may contribute to diapycnal mixing in the deep ocean in a manner similar to that proposed recently for the Southern Ocean. In addition, it is found that under a plausible climate change scenario, the amplitude of the mean annual cycle of wind stress may change. Among the regions where such changes are most pronounced is that in the extratropical North Pacific. It is shown that the data on surface wind stress can be effectively used to identify the seasons with the largest changes in the deep-reaching overturning cells. Finally, unlike what might be expected from the earlier theories, the annual-mean circulation simulated by the model with ¼° resolution has the deep interior flows that tend to group into jetlike structures, often having a predominant equatorward rather than poleward direction.

Corresponding author address: Oleg A. Saenko, CCCma, 3964 Gordon Head Road, Victoria, BC V8N 3X3, Canada. Email: oleg.saenko@ec.gc.ca

Save
  • Anderson, D. L. T., and A. E. Gill, 1975: Spin-up of a stratified ocean with application to upwelling. Deep-Sea Res., 22 , 583596.

  • Anderson, D. L. T., and P. D. Killworth, 1977: Spin-up of a stratified ocean, with topography. Deep-Sea Res., 24 , 709732.

  • Boning, C. W., and P. Herrmann, 1994: Annual cycle of poleward heat transport in the ocean: Results from high-resolution modeling of the North and equatorial Atlantic. J. Phys. Oceanogr., 24 , 91107.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 1989: Evidence for wind-driven current fluctuations in the western North Atlantic. J. Geophys. Res., 94 , 20292044.

  • Bryan, K., 1982: Seasonal variation in meridional overturning and poleward heat transport in the Atlantic and Pacific Oceans: A model study. J. Mar. Res., 40 , (Suppl.). 3953.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., and W. D. Hibler III, 1992: Modeling pack ice as a cavitating fluid. J. Phys. Oceanogr., 22 , 626651.

  • Flato, G. M., G. J. Boer, W. G. Lee, N. A. McFarlane, D. Ramsden, M. C. Reader, and A. J. Weaver, 2000: The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate. Climate Dyn., 16 , 451467.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean general circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Gill, A. E., and P. Niiler, 1973: The theory of seasonal variability in the ocean. Deep-Sea Res., 20 , 141177.

  • Hogg, N. G., and W. B. Owens, 1999: Direct measurement of the deep circulation within the Brazil Basin. Deep-Sea Res. II, 46 , 335353.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2001: The dynamics of ocean heat transport variability. Rev. Geophys., 39 , 385411.

  • Koblinsky, C. J., and P. P. Niiler, 1982: The relationship between deep ocean currents and winds east of Barbados. J. Phys. Oceanogr., 12 , 144153.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., R. Burgett, and T. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • McClean, J. L., A. J. Semtner, and V. Zlotnicki, 1997: Comparisons of mesoscale variability in the Semtner-Chervin 1/4 degree model, the Los Alamos Parallel Ocean Program 1/6 degree model, and TOPEX/POSEIDON data. J. Geophys. Res., 102 , 2520325226.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., G. J. Boer, J-P. Blanchet, and M. Lazare, 1992: The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J. Climate, 5 , 10131044.

    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., J. Morzel, D. B. Chelton, and M. H. Freilich, 2004: Wind stress curl and wind stress divergence biases from rain effects on QSCAT surface wind retrievals. J. Atmos. Oceanic Technol., 21 , 12161231.

    • Search Google Scholar
    • Export Citation
  • Nakano, H., R. Furue, and N. Suginohara, 1999: Effect of seasonal forcing on global circulation in a world ocean general circulation model. Climate Dyn., 15 , 491502.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303 , 210213.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., and C. J. Koblinsky, 1985: A local time-dependent Sverdrup balance in the eastern North Pacific Ocean. Science, 229 , 754756.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., J. Filloux, W. T. Liu, R. M. Samelson, J. D. Paduan, and C. A. Paulson, 1993: Wind-forced variability of the deep eastern North Pacific: Observations of seafloor pressure and abyssal currents. J. Geophys. Res., 98 , 2258922602.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Qiu, B., 2002: Large-scale variability in the midlatitude subtropical and subpolar North Pacific Ocean: Observations and causes. J. Phys. Oceanogr., 32 , 353375.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8 , 78837930.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., and R. M. Chervin, 1988: A simulation of the global ocean circulation with resolved eddies. J. Geophys. Res., 93 , 1550215522.

    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., and R. M. Chervin, 1992: Ocean general circulation from a global eddy-resolving model. J. Geophys. Res., 97 , 54935550.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., R. Tokmakian, A. J. Semtner, and C. Wunsch, 1996: How well does a 1/4 degree global circulation model simulate large-scale oceanic observations? J. Geophys. Res., 101 , 2577925811.

    • Search Google Scholar
    • Export Citation
  • Stommel, H. M., and A. B. Arons, 1960: On the abyssal circulation of the world ocean—I. Stationary planetary flow patterns on a sphere. Deep-Sea Res., 6 , 140154.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H., 1947: Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33 , 318326.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., W. G. Large, and J. G. Olson, 1990: The mean annual cycle in global ocean wind stress. J. Phys. Oceanogr., 20 , 17421760.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and Coauthors, 2001: The UVic Earth System Climate Model: Model description, climatology and application to past, present and future climates. Atmos.–Ocean, 39 , 361428.

    • Search Google Scholar
    • Export Citation
  • White, W. B., 1978: A wind-driven model experiment of the seasonal cycle of the main thermocline in the interior midlatitude North Pacific. J. Phys. Oceanogr., 8 , 818824.

    • Search Google Scholar
    • Export Citation
  • Willebrand, J., S. G. H. Philander, and R. C. Pacanowski, 1980: The oceanic response to large-scale atmospheric disturbances. J. Phys. Oceanogr., 10 , 411429.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36 , 281314.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 136 35 5
PDF Downloads 86 26 4