The Role of Ekman Ocean Heat Transport in the Northern Hemisphere Response to ENSO

Michael A. Alexander NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Michael A. Alexander in
Current site
Google Scholar
PubMed
Close
and
James D. Scott CIRES, University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by James D. Scott in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The influence of oceanic Ekman heat transport (Qek) on air–sea variability associated with ENSO teleconnections is examined via a pair of atmospheric general circulation model (AGCM) experiments. In the mixed layer model (MLM) experiment, observed sea surface temperatures (SSTs) for the years 1950–99 are specified over the tropical Pacific, while a grid of mixed layer models is coupled to the AGCM elsewhere over the global oceans. The same experimental design was used in the Ekman transport/mixed layer model (EKM) experiment with the addition of Qek in the mixed layer ocean temperature equation. The ENSO signal was evaluated using differences between composites of El Niño and La Niña events averaged over the 16 ensemble members in each experiment.

In both experiments the Aleutian low deepened and the resulting surface heat fluxes cooled the central North Pacific and warmed the northeast Pacific during boreal winter in El Niño relative to La Niña events. Including Qek amplified the ENSO-related SSTs by ∼⅓ in the central and northeast North Pacific, producing anomalies comparable to those in nature. Differences between the ENSO-induced atmospheric circulation anomalies in the EKM and MLM experiments were not significant over the North Pacific. The sea level pressure (SLP) and SST response to ENSO over the Atlantic strongly projects on the North Atlantic Oscillation (NAO) and the SST tripole pattern in observations and both model experiments. The La Niña anomalies, which are stronger than during El Niño, include high pressure and positive SSTs in the central North Atlantic. Including Ekman transport enhanced the Atlantic SST anomalies, which in contrast to the Pacific, appeared to strengthen the overlying atmospheric circulation.

Corresponding author address: Michael Alexander, NOAA/Earth System Research Laboratory, Physical Science Division, R/PSD1, 325 Broadway, Boulder, CO 80305. Email: michael.alexander@noaa.gov

Abstract

The influence of oceanic Ekman heat transport (Qek) on air–sea variability associated with ENSO teleconnections is examined via a pair of atmospheric general circulation model (AGCM) experiments. In the mixed layer model (MLM) experiment, observed sea surface temperatures (SSTs) for the years 1950–99 are specified over the tropical Pacific, while a grid of mixed layer models is coupled to the AGCM elsewhere over the global oceans. The same experimental design was used in the Ekman transport/mixed layer model (EKM) experiment with the addition of Qek in the mixed layer ocean temperature equation. The ENSO signal was evaluated using differences between composites of El Niño and La Niña events averaged over the 16 ensemble members in each experiment.

In both experiments the Aleutian low deepened and the resulting surface heat fluxes cooled the central North Pacific and warmed the northeast Pacific during boreal winter in El Niño relative to La Niña events. Including Qek amplified the ENSO-related SSTs by ∼⅓ in the central and northeast North Pacific, producing anomalies comparable to those in nature. Differences between the ENSO-induced atmospheric circulation anomalies in the EKM and MLM experiments were not significant over the North Pacific. The sea level pressure (SLP) and SST response to ENSO over the Atlantic strongly projects on the North Atlantic Oscillation (NAO) and the SST tripole pattern in observations and both model experiments. The La Niña anomalies, which are stronger than during El Niño, include high pressure and positive SSTs in the central North Atlantic. Including Ekman transport enhanced the Atlantic SST anomalies, which in contrast to the Pacific, appeared to strengthen the overlying atmospheric circulation.

Corresponding author address: Michael Alexander, NOAA/Earth System Research Laboratory, Physical Science Division, R/PSD1, 325 Broadway, Boulder, CO 80305. Email: michael.alexander@noaa.gov

Save
  • Adamec, D., M. M. Rienecker, and J. M. Vukovich, 1993: The time-varying characteristics of the meridional Ekman heat transport of the World Ocean. J. Phys. Oceanogr., 23 , 27042716.

    • Search Google Scholar
    • Export Citation
  • Adem, J., 1970: On the prediction of mean monthly ocean temperature. Tellus, 22 , 410430.

  • Adem, J., 1975: Numerical-thermodynamical prediction of monthly ocean temperature. Tellus, 27 , 541551.

  • Alexander, M. A., 1990: Simulation of the response of the North Pacific Ocean to the anomalous atmospheric circulation associated with El Niño. Climate Dyn., 5 , 5365.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., 1992a: Midlatitude atmosphere–ocean interaction during El Niño. Part I: The North Pacific Ocean. J. Climate, 5 , 944958.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., 1992b: Midlatitude atmosphere–ocean interaction during El Niño. Part II: The Northern Hemisphere atmosphere. J. Climate, 5 , 959972.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., J. D. Scott, and C. Deser, 2000: Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model. J. Geophys. Res., 105 , 1682316842.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Alexander, M., A. Capotondi, A. Miller, F. Chai, R. Brodeur, and C. Deser, 2008: Decadal variability in the Northeast Pacific in a physical-ecosystem model: The role of mixed layer depth and trophic interactions. J. Geophys. Res., 113 .C02017, doi:10.1029/2007JC004359.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., H. Okajima, and M. Watanabe, 2007: Possible impact of the Indian Ocean SST on the Northern Hemisphere circulation during El Niño. J. Climate, 20 , 31643189.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., 1999: The influence of midlatitude ocean–atmosphere coupling on the low-frequency variability of a GCM. Part II: Interannual variability induced by tropical SST forcing. J. Climate, 12 , 2145.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., and S. Manabe, 1992: The effects of orography on midlatitude Northern Hemisphere dry climates. J. Climate, 5 , 11811201.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., and L. Terray, 2001: Oceanic forcing of the wintertime low-frequency atmospheric variability in the North Atlantic European sector: A study with the ARPEGE model. J. Climate, 14 , 42664291.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., C. Deser, L. Terray, J. W. Hurrell, and M. Drévillon, 2004: Summer sea surface temperature conditions in the North Atlantic and their impact upon the atmospheric circulation in early winter. J. Climate, 17 , 33493363.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., C. Deser, and M. A. Alexander, 2007: Investigating the impact of reemerging sea surface temperature anomalies on the winter atmospheric circulation over the North Atlantic. J. Climate, 20 , 35103526.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation. J. Climate, 5 , 354369.

    • Search Google Scholar
    • Export Citation
  • Clark, N. E., 1972: Specification of sea surface temperature anomaly patterns in the eastern North Pacific. J. Phys. Oceanogr., 2 , 391404.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., and S. Hastenrath, 1995: Forcing of anomalous sea surface temperature evolution in the tropical Atlantic during Pacific warm events. J. Geophys. Res., 100 , 1583515847.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic oscillation. J. Climate, 15 , 606623.

    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., C. C. Young, and S. Levitus, 1994: Anomalies of Heat and Momentum Fluxes. Vol. 3, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 8, 413 pp.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1996: Upper-ocean thermal variations in the North Pacific during 1970–1991. J. Climate, 9 , 18401855.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1999: Evidence for a wind-driven intensification of the Kuroshio Current extension from the 1970s to the 1980s. J. Climate, 12 , 16971706.

    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., and S. Nigam, 2002: Linearity in ENSO’s atmospheric response. J. Climate, 15 , 24462461.

  • Dong, B-W., and R. T. Sutton, 2001: The dominant mechanisms of variability in Atlantic Ocean heat transport in a coupled ocean–atmosphere GCM. Geophys. Res. Lett., 28 , 24452448.

    • Search Google Scholar
    • Export Citation
  • Drévillon, M., C. Cassou, and L. Terray, 2003: Model study of the North Atlantic region atmospheric response to autumn tropical Atlantic sea-surface-temperature anomalies. Quart. J. Roy. Meteor. Soc., 129 , 25912611.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J. Geophys. Res., 102 , 929945.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air–sea feedback in the middle latitudes. Rev. Geophys., 23 , 357390.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part 2. Application to sea-surface temperature variability and thermocline variability. Tellus, 29 , 284305.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and R. W. Reynolds, 1983: Testing a dynamical model for mid-latitude sea surface temperature anomalies. J. Phys. Oceanogr., 13 , 11311145.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and E. Kestenare, 2005: Observed Atlantic SST anomaly impact on the NAO: An update. J. Climate, 18 , 40894094.

  • Gaspar, P., 1988: Modeling the seasonal cycle of the upper ocean. J. Phys. Oceanogr., 18 , 161180.

  • Gordon, C. T., and W. Stern, 1982: A description of the GFDL global spectral model. Mon. Wea. Rev., 110 , 625644.

  • Haarsma, R. J., E. J. D. Campos, W. Hazeleger, C. Severijns, A. R. Piola, and F. Molteni, 2005: Dominant modes of variability in the South Atlantic: Study with a hierarchy of ocean–atmosphere models. J. Climate, 18 , 17191735.

    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1980: A numerical case study of the development of large-scale thermal anomalies in the central North Pacific Ocean. J. Phys. Oceanogr., 10 , 541556.

    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1985: Midlatitude sea surface temperature anomalies: A numerical hindcast. J. Phys. Oceanogr., 15 , 787799.

  • Harrison, D. E., and N. K. Larkin, 1998: El Niño-Southern Oscillation sea surface temperature and wind anomalies, 1946–1993. Rev. Geophys., 36 , 353399.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10 , 17691786.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. W. Hurrell, and T. Xu, 2001a: Tropical origins for recent North Atlantic climate change. Science, 292 , 9092.

  • Hoerling, M. P., A. Kumar, and T. Xu, 2001b: Robustness of the nonlinear climate response to ENSO’s extreme phases. J. Climate, 14 , 12771293.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. W. Hurrell, T. Xu, G. T. Bates, and A. S. Phillips, 2004: Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Climate Dyn., 23 , 391405.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47 , 18541864.

  • Jacob, W. J., 1967: Numerical semiprediction of monthly mean sea surface temperature. J. Geophys. Res., 72 , 16811689.

  • Joint Environmental Data Analysis Center, cited. 2008: Mixed layer depth. [Available online at http://jedac.ucsd.edu/DATA_IMAGES/index.html.].

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and S. Levitus, 1986: Annual heat fluctuations across the Tropic Circles. J. Phys. Oceanogr., 16 , 14791486.

  • Kwon, Y-O., and C. Deser, 2007: North Pacific decadal variability in the Community Climate System Model version 2. J. Climate, 20 , 24162433.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 1994: A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system. J. Climate, 7 , 11841207.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9 , 20362057.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 2001: Impact of ENSO on SST variability in the North Pacific and North Atlantic: Seasonal dependence and role of extratropical sea–air coupling. J. Climate, 14 , 28462866.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1987: Meridional Ekman heat fluxes for the world ocean and individual ocean basins. J. Phys. Oceanogr., 17 , 14841492.

  • Li, S., M. P. Hoerling, S. Peng, and K. M. Weickmann, 2006: The annular response to tropical Pacific SST forcing. J. Climate, 19 , 18021819.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and M. A. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45 .RG2005, doi:10.1029/2005RG000172.

    • Search Google Scholar
    • Export Citation
  • Luksch, U., 1996: Simulation of North Atlantic low-frequency variability. J. Climate, 9 , 20832092.

  • Luksch, U., and H. von Storch, 1992: Modeling the low-frequency sea surface temperature variability in the North Pacific. J. Climate, 5 , 893906.

    • Search Google Scholar
    • Export Citation
  • Mathieu, P-P., R. T. Sutton, B. Dong, and M. Collins, 2004: Predictability of winter climate over the North Atlantic European region during ENSO events. J. Climate, 17 , 19531974.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., D. R. Cayan, T. P. Barnett, N. E. Graham, and J. M. Oberhuber, 1994: Interdecadal variability of the Pacific Ocean: Model response to observed heat flux and wind stress anomalies. Climate Dyn., 10 , 287302.

    • Search Google Scholar
    • Export Citation
  • Millif, R. F., W. G. Large, J. Morzel, G. Danabasoglu, and T. M. Chin, 1999: Ocean general circulation model sensitivity to forcing from scatterometer winds. J. Geophys. Res., 104 , 1133711358.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1959: Recent seasonal interactions between North Pacific waters and the overlying atmospheric circulation. J. Geophys. Res., 64 , 631646.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1965: Macroscopic association between mean monthly sea-surface temperature and the overlying winds. J. Geophys. Res., 70 , 23072318.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1972: Experiments in objectively predicting some atmospheric and oceanic variables for the winter of 1971–1972. J. Appl. Meteor., 11 , 11641174.

    • Search Google Scholar
    • Export Citation
  • Park, S., M. A. Alexander, and C. Deser, 2006: The impact of cloud radiative feedback, remote ENSO forcing, and entrainment on the persistence of North Pacific sea surface temperature anomalies. J. Climate, 19 , 62436261.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16 , 19872004.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, S. Li, and M. P. Hoerling, 2005: Tropical Atlantic SST forcing of coupled North Atlantic seasonal responses. J. Climate, 18 , 480496.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, S. Li, and M. A. Alexander, 2006: Effects of Ekman transport on the NAO response to a tropical Atlantic SST anomaly. J. Climate, 19 , 48034818.

    • Search Google Scholar
    • Export Citation
  • Pozo-Vázquez, D., M. J. Esteban-Parra, F. S. Rodrigo, and Y. Castro-Díez, 2001: The association between ENSO and winter atmospheric circulation and temperature in the North Atlantic region. J. Climate, 14 , 34083420.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2000: Interannual variability of the Kuroshio Extension and its impact on the wintertime SST field. J. Phys. Oceanogr., 30 , 14861502.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110 , 354384.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., D. P. Rowell, and C. K. Folland, 1999: Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398 , 320323.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2000: Changes of probability associated with El Niño. J. Climate, 13 , 42684286.

  • Sato, O. T., P. S. Polito, and W. T. Liu, 2002: Intra-decadal variability in the Ekman heat flux from scatterometer winds. Geophys. Res. Lett., 29 .1831, doi:10.1029/2002GL014775.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., and A. J. Miller, 2001: Predicting North Pacific Ocean climate. J. Climate, 14 , 39974002.

  • Seager, R., Y. Kushnir, M. Visbeck, N. Naik, J. Miller, G. Krahmann, and H. Cullen, 2000: Causes of Atlantic Ocean climate variability between 1958 and 1998. J. Climate, 13 , 28452862.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, N. H. Naik, M. A. Cane, and J. Miller, 2001: Wind-driven shifts in the latitude of the Kuroshio–Oyashio Extension and generation of SST anomalies on decadal timescales. J. Climate, 14 , 42494265.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, R. E. Livezey, and D. C. Stokes, 1996: Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J. Climate, 9 , 14031420.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., and W. Hazeleger, 2003: Coupled variability and air–sea interaction in the South Atlantic Ocean. Climate Dyn., 21 , 559571.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., W. A. Norton, and S. P. Jewson, 2001: The North Atlantic Oscillation—What role for the ocean? Atmos. Sci. Lett., 1 , 89100.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and P. D. Sardeshmukh, 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci., 50 , 907918.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78 , 27712777.

  • van Loon, H., and R. A. Madden, 1981: The Southern Oscillation. Part I: Global associations with pressure and temperature in northern winter. Mon. Wea. Rev., 109 , 11501162.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., and J. C. Rogers, 1981: The Southern Oscillation. Part II: Associations with changes in the middle troposphere in the northern winter. Mon. Wea. Rev., 109 , 11631168.

    • Search Google Scholar
    • Export Citation
  • Venzke, S., M. R. Allen, R. T. Sutton, and D. P. Rowell, 1999: The atmospheric response over the North Atlantic to decadal sea surface temperature changes. J. Climate, 12 , 25622584.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2000: On the persistence of decadal SST anomalies in the North Atlantic. J. Climate, 13 , 30173028.

  • Weller, R. A., and A. J. Plueddemann, 1996: Observations of the vertical structure of the oceanic boundary layer. J. Geophys Res., 101 , 87898806.

    • Search Google Scholar
    • Export Citation
  • White, W. B., 1995: Design of a global observing system for gyre-scale upper ocean temperature variability. Prog. Oceanogr., 36 , 169217.

    • Search Google Scholar
    • Export Citation
  • White, W. B., R. Bernstein, G. McNally, S. Pazan, and R. Dickson, 1980: The thermocline response to transient atmospheric forcing in the interior midlatitude North Pacific 1976–1978. J. Phys. Oceanogr., 10 , 372384.

    • Search Google Scholar
    • Export Citation
  • Whitney, F. A., and H. J. Freeland, 1999: Variability in upper-ocean water properties in the NE Pacific Ocean. Deep-Sea Res. II, 46 , 23512370.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., and D. S. Battisti, 2004: Why do baroclinic waves tilt poleward with height? J. Atmos. Sci., 61 , 14541460.

All Time Past Year Past 30 Days
Abstract Views 1 0 0
Full Text Views 1371 511 35
PDF Downloads 1159 310 25