Energy of Midlatitude Transient Eddies in Idealized Simulations of Changed Climates

Paul A. O’Gorman California Institute of Technology, Pasadena, California

Search for other papers by Paul A. O’Gorman in
Current site
Google Scholar
PubMed
Close
and
Tapio Schneider California Institute of Technology, Pasadena, California

Search for other papers by Tapio Schneider in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

As the climate changes, changes in static stability, meridional temperature gradients, and availability of moisture for latent heat release may exert competing effects on the energy of midlatitude transient eddies. This paper examines how the eddy kinetic energy in midlatitude baroclinic zones responds to changes in radiative forcing in simulations with an idealized moist general circulation model. In a series of simulations in which the optical thickness of the longwave absorber is varied over a wide range, the eddy kinetic energy has a maximum for a climate with mean temperature similar to that of present-day earth, with significantly smaller values both for warmer and for colder climates. In a series of simulations in which the meridional insolation gradient is varied, the eddy kinetic energy increases monotonically with insolation gradient. In both series of simulations, the eddy kinetic energy scales approximately linearly with the dry mean available potential energy averaged over the baroclinic zones. Changes in eddy kinetic energy can therefore be related to the changes in the atmospheric thermal structure that affect the mean available potential energy.

* Current affiliation: Massachusetts Institute of Technology, Cambridge, Massachusetts.

Corresponding author address: Paul O’Gorman, Department of Earth, Atmospheric, and Planetary Sciences, 54-1616, MIT, 77 Massachusetts Ave., Cambridge, MA 02139. Email: pog@caltech.edu

Abstract

As the climate changes, changes in static stability, meridional temperature gradients, and availability of moisture for latent heat release may exert competing effects on the energy of midlatitude transient eddies. This paper examines how the eddy kinetic energy in midlatitude baroclinic zones responds to changes in radiative forcing in simulations with an idealized moist general circulation model. In a series of simulations in which the optical thickness of the longwave absorber is varied over a wide range, the eddy kinetic energy has a maximum for a climate with mean temperature similar to that of present-day earth, with significantly smaller values both for warmer and for colder climates. In a series of simulations in which the meridional insolation gradient is varied, the eddy kinetic energy increases monotonically with insolation gradient. In both series of simulations, the eddy kinetic energy scales approximately linearly with the dry mean available potential energy averaged over the baroclinic zones. Changes in eddy kinetic energy can therefore be related to the changes in the atmospheric thermal structure that affect the mean available potential energy.

* Current affiliation: Massachusetts Institute of Technology, Cambridge, Massachusetts.

Corresponding author address: Paul O’Gorman, Department of Earth, Atmospheric, and Planetary Sciences, 54-1616, MIT, 77 Massachusetts Ave., Cambridge, MA 02139. Email: pog@caltech.edu

Save
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19 , 35183543.

  • Caballero, R., and P. L. Langen, 2005: The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys. Res. Lett., 32 .L02705, doi:10.1029/2004GL021581.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15 , 21632183.

  • Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44 , 15591573.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64 , 19591976.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2007: A gray-radiation aquaplanet moist GCM. Part II: Energy transports in altered climates. J. Atmos. Sci., 64 , 16801693.

    • Search Google Scholar
    • Export Citation
  • Geng, Q., and M. Sugi, 2003: Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulfate aerosols—Study with a high-resolution AGCM. J. Climate, 16 , 22622274.

    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96 , 157185.

    • Search Google Scholar
    • Export Citation
  • Gutowski Jr., W. J., L. E. Branscome, and D. A. Stewart, 1992: Life cycles of moist baroclinic eddies. J. Atmos. Sci., 49 , 306319.

  • Held, I. M., 1978: The tropospheric lapse rate and climatic sensitivity: Experiments with a two-level atmospheric model. J. Atmos. Sci., 35 , 20832098.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1993: Large-scale dynamics and global warming. Bull. Amer. Meteor. Soc., 74 , 228241.

  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic Press, 535 pp.

  • Juckes, M. N., 2000: The static stability of the midlatitude troposphere: The relevance of moisture. J. Atmos. Sci., 57 , 30503057.

  • Korty, R. L., and T. Schneider, 2007: A climatology of the tropospheric thermal stratification using saturation potential vorticity. J. Climate, 20 , 59775991.

    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., 1995: The effect of enhanced greenhouse warming on winter cyclone frequencies and strengths. J. Climate, 8 , 14471452.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and I. M. Held, 2004: The role of moisture in the dynamics and energetics of turbulent baroclinic eddies. J. Atmos. Sci., 61 , 16931710.

    • Search Google Scholar
    • Export Citation
  • Li, C., and D. S. Battisti, 2008: Reduced Atlantic storminess during Last Glacial Maximum: Evidence from a coupled climate model. J. Climate, 21 , 35613579.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7 , 157167.

  • Lorenz, E. N., 1979: Numerical evaluation of moist available energy. Tellus, 31 , 230235.

  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21 , 38153832.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Reed, R. J., A. J. Simmons, M. D. Albright, and P. Undén, 1988: The role of latent heat release in explosive cyclogenesis: Three examples based on ECMWF operational forecasts. Wea. Forecasting, 3 , 217229.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., 1981: On the amplitudes reached by baroclinically unstable disturbances. J. Atmos. Sci., 38 , 21422149.

  • Schneider, T., 2007: The thermal stratification of the extratropical troposphere. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 47–77.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and C. C. Walker, 2006: Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy–eddy interactions. J. Atmos. Sci., 63 , 15691586.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and P. A. O’Gorman, 2008: Moist convection and the thermal stratification of the extratropical troposphere. J. Atmos. Sci., 65 , 35713583.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and C. C. Walker, 2008: Scaling laws and regime transitions of macroturbulence in dry atmospheres. J. Atmos. Sci., 65 , 21532173.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1972: A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci., 29 , 405418.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1978: Baroclinic adjustment. J. Atmos. Sci., 35 , 561571.

  • Thuburn, J., and G. C. Craig, 1997: GCM tests of theories for the height of the tropopause. J. Atmos. Sci., 54 , 869882.

  • Thuburn, J., and G. C. Craig, 2000: Stratospheric influence on tropopause height: The radiative constraint. J. Atmos. Sci., 57 , 1728.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32 .L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation