Response of the Zonal Mean Atmospheric Circulation to El Niño versus Global Warming

Jian Lu National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jian Lu in
Current site
Google Scholar
PubMed
Close
,
Gang Chen Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Gang Chen in
Current site
Google Scholar
PubMed
Close
, and
Dargan M. W. Frierson Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Dargan M. W. Frierson in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The change in the zonal mean atmospheric circulation under global warming is studied in comparison with the response to El Niño forcing, by examining the model simulations conducted for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In contrast to the strengthening and contraction of the Hadley cell and the equatorward shift of the tropospheric zonal jets in response to El Niño, the Hadley cell weakens and expands poleward, and the jets move poleward in a warmed climate, despite the projected “El Niño–like” enhanced warming over the equatorial central and eastern Pacific. The hydrological impacts of global warming also exhibit distinct patterns over the subtropics and midlatitudes in comparison to the El Niño.

Two feasible mechanisms are proposed for the zonal mean circulation response to global warming: 1) The increase in static stability of the subtropical and midlatitude troposphere, a robust result of the quasi-moist adiabatic adjustment to the surface warming, may stabilize the baroclinic eddy growth on the equatorward side of the storm tracks and push the eddy activity and the associated eddy-driven wind and subsidence poleward, leading to the poleward expansion of the Hadley cell and the shift of midlatitude jets; 2) the strengthening of the midlatitude wind at the upper troposphere and lower stratosphere, arguably a consequence of increases in the meridional temperature gradient near the tropopause level due to the tropospheric warming and tropopause slope, may increase the eastward propagation of the eddies emanating from the midlatitudes, and thus the subtropical region of wave breaking displaces poleward together with the eddy-driven circulation. Both mechanisms are somewhat, if not completely, distinct from those in response to the El Niño condition.

Corresponding author address: Jian Lu, NCAR/CGD 1850, Table Mesa Dr., Boulder, CO 80305. Email: jianlu@ucar.edu

Abstract

The change in the zonal mean atmospheric circulation under global warming is studied in comparison with the response to El Niño forcing, by examining the model simulations conducted for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In contrast to the strengthening and contraction of the Hadley cell and the equatorward shift of the tropospheric zonal jets in response to El Niño, the Hadley cell weakens and expands poleward, and the jets move poleward in a warmed climate, despite the projected “El Niño–like” enhanced warming over the equatorial central and eastern Pacific. The hydrological impacts of global warming also exhibit distinct patterns over the subtropics and midlatitudes in comparison to the El Niño.

Two feasible mechanisms are proposed for the zonal mean circulation response to global warming: 1) The increase in static stability of the subtropical and midlatitude troposphere, a robust result of the quasi-moist adiabatic adjustment to the surface warming, may stabilize the baroclinic eddy growth on the equatorward side of the storm tracks and push the eddy activity and the associated eddy-driven wind and subsidence poleward, leading to the poleward expansion of the Hadley cell and the shift of midlatitude jets; 2) the strengthening of the midlatitude wind at the upper troposphere and lower stratosphere, arguably a consequence of increases in the meridional temperature gradient near the tropopause level due to the tropospheric warming and tropopause slope, may increase the eastward propagation of the eddies emanating from the midlatitudes, and thus the subtropical region of wave breaking displaces poleward together with the eddy-driven circulation. Both mechanisms are somewhat, if not completely, distinct from those in response to the El Niño condition.

Corresponding author address: Jian Lu, NCAR/CGD 1850, Table Mesa Dr., Boulder, CO 80305. Email: jianlu@ucar.edu

Save
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in the hydrological cycle. Nature, 419 , 224228.

  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, R. Murtugudde, D. Pozdnyakov, R. Seager, and S. E. Zebiak, 1997: 20th century sea surface temperature trends. Science, 275 , 957960.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1995: The influence of Hadley circulation intensity changes on extratropical climate in an idealized model. J. Atmos. Sci., 52 , 20062024.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34 .L21805, doi:10.1029/2007GL031200.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and P. Zurita-Gotor, 2008: The tropospheric jet response to prescribed zonal forcing in an idealized atmospheric model. J. Atmos. Sci., 65 , 22542271.

    • Search Google Scholar
    • Export Citation
  • Chen, G., I. M. Held, and W. A. Robinson, 2007: Sensitivity to the latitude of the surface westerlies to surface friction. J. Atmos. Sci., 64 , 28992915.

    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Lu, and D. M. W. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21 , 59425959.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9 , 21902196.

  • Collins, M., and The CMIP Modeling Groups, 2005: El Niño- or La Niña-like climate change? Climate Dyn., 24 , 89104.

  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulations and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2006: Robust increases in midlatitude static stability in global warming simulations. Geophys. Res. Lett., 33 .L24816, doi:10.1029/2006GL027504.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2008: Midlatitude static stability in simple and comprehensive general circulation models. J. Atmos. Sci., 65 , 10491062.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63 , 25482566.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., J. Lu, and G. Chen, 2007: The width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34 .L18804, doi:10.1029/2007GL031115.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and D. S. Battisti, 1999: Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J. Climate, 12 , 21132123.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2003: A technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, NOAA/Geophysical Fluid Dynamical Laboratory, Princeton, NJ, 295 pp.

  • Haigh, J. D., M. Blackburn, and R. Day, 2005: The response of tropospheric circulation to perturbations in lower-stratospheric temperature. J. Climate, 18 , 36723685.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102 , D6. 68316864.

  • Hayashi, Y., 1971: A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. J. Meteor. Soc. Japan, 49 , 125128.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Res., 37 , 515533.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and E. O’Brien, 1992: Quasigeostrophic turbulence in a three-layer model: Effects of vertical structure in the mean shear. J. Atmos. Sci., 49 , 18611870.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust response of the hydrological cycle to global warming. J. Climate, 19 , 56865699.

  • Held, I. M., and Coauthors, 2000: The general circulation of the atmosphere. Proc. 2000 Program in Geophysical Fluid Dynamics. Woods Hole, MA, Woods Hole Oceanographic Institute, 1–54. [Available online at http://gfd.whoi.edu.].

    • Search Google Scholar
    • Export Citation
  • Juckes, M. N., 2000: The static stability of the midlatitude troposphere: The relevance of moisture. J. Atmos. Sci., 57 , 30503057.

  • Kim, H., and S. Lee, 2004: The wave-zonal mean flow interaction in the Southern Hemisphere. J. Atmos. Sci., 61 , 10551067.

  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J. Climate, 8 , 21812199.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14 , 22382249.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19 , 276287.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., S. J. Vavrus, F. He, N. Wen, and Y. Zhang, 2005: Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Climate, 18 , 46844700.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: The tropopause height and the zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112 .D10119, doi:10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34 .L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24 , 241259.

    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1954: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus, 6 , 273286.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48 , 688697.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., M. Dameris, and R. Sausen, 2003: Determining the tropopause height from gridded data. Geophys. Res. Lett., 30 .2042, doi:10.1029/2003GL018240.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2002: On the midlatitude thermal response to tropical warming. Geophys. Res. Lett., 29 .1190, doi:10.1029/2001GL014158.

  • Seager, R., and R. Murtugudde, 1997: Ocean dynamics, thermocline adjustment, and regulation of tropical SST. J. Climate, 10 , 521534.

  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16 , 29602978.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model projection of an imminent transition to a more arid climate in southwestern North America. Science, 316 , 11811184.

    • Search Google Scholar
    • Export Citation
  • Son, S-W., and S. Lee, 2005: The response of westerly jets to thermal driving in a primitive equation model. J. Atmos. Sci., 62 , 37413757.

    • Search Google Scholar
    • Export Citation
  • Van Oldenborgh, G. J., S. Y. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1 , 8195.

  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20 , 43164340.

  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2005: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441 , 7376.

    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63 , 33333350.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 2006: Circulation sensitivity to tropopause height. J. Atmos. Sci., 63 , 19541961.

  • Wittenberg, A. T., A. Rosati, N-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19 , 698722.

    • Search Google Scholar
    • Export Citation
  • Wittman, M. A. H., A. J. Charlton, and L. M. Polvani, 2007: The effect of lower stratospheric shear on baroclinic instability. J. Atmos. Sci., 64 , 479496.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1957: Meteorology—A three-dimensional science: Second session of the commission for aerology. WMO Bull., IV , 134138.

    • Search Google Scholar
    • Export Citation
  • Xu, K., and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117 , 14711479.

  • Yamaguchi, K., and A. Noda, 2006: Global warming patterns over the North Pacific: ENSO versus AO. J. Meteor. Soc. Japan, 84 , 221241.

  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32 .L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and H. Song, 2006: Evidence of deceleration of atmo spheric vertical overturning circulation over the tropical Pacific. Geophys. Res. Lett., 33 .L12701, doi:10.1029/2006GL025942.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3574 1101 205
PDF Downloads 2779 635 43