The Impact of Convection on ENSO: From a Delayed Oscillator to a Series of Events

Richard B. Neale National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Richard B. Neale in
Current site
Google Scholar
PubMed
Close
,
Jadwiga H. Richter National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jadwiga H. Richter in
Current site
Google Scholar
PubMed
Close
, and
Markus Jochum National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Markus Jochum in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The NCAR Community Climate System Model, version 3 (CCSM3) exhibits persistent errors in its simulation of the El Niño–Southern Oscillation (ENSO) mode of coupled variability. The amplitude of the oscillation is too strong, the dominant 2-yr period too regular, and the width of the sea surface temperature response in the Pacific too narrow, with positive anomalies extending too far into the western Pacific. Two changes in the parameterization of deep convection result in a significant improvement to many aspects of the ENSO simulation. The inclusion of convective momentum transport (CMT) and a dilution approximation for the calculation of convective available potential energy (CAPE) are used in development integrations, and a striking improvement in ENSO characteristics is seen. An increase in the periodicity of ENSO is achieved by a reduction in the strength of the existing “short-circuited” delayed-oscillator mode. The off-equatorial response is weaker and less tropically confined, largely as a result of the CMT and an associated redistribution of zonal momentum. The Pacific east–west structure is improved in response to the presence of convective dilution and cooling provided by increased surface fluxes. The initiation of El Niño events is fundamentally different. Enhanced intraseasonal surface stress variability leads to absolute surface westerlies and a cooling–warming dipole between the Philippine Sea and western Pacific. Lag-regression analysis shows that intraseasonal variability may play a significant role in event initiation and maintenance as opposed to being a benign response to increased SSTs. Recent observational evidence appears to support such a leading relationship.

Corresponding author address: Richard Neale, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: rneale@ucar.edu

Abstract

The NCAR Community Climate System Model, version 3 (CCSM3) exhibits persistent errors in its simulation of the El Niño–Southern Oscillation (ENSO) mode of coupled variability. The amplitude of the oscillation is too strong, the dominant 2-yr period too regular, and the width of the sea surface temperature response in the Pacific too narrow, with positive anomalies extending too far into the western Pacific. Two changes in the parameterization of deep convection result in a significant improvement to many aspects of the ENSO simulation. The inclusion of convective momentum transport (CMT) and a dilution approximation for the calculation of convective available potential energy (CAPE) are used in development integrations, and a striking improvement in ENSO characteristics is seen. An increase in the periodicity of ENSO is achieved by a reduction in the strength of the existing “short-circuited” delayed-oscillator mode. The off-equatorial response is weaker and less tropically confined, largely as a result of the CMT and an associated redistribution of zonal momentum. The Pacific east–west structure is improved in response to the presence of convective dilution and cooling provided by increased surface fluxes. The initiation of El Niño events is fundamentally different. Enhanced intraseasonal surface stress variability leads to absolute surface westerlies and a cooling–warming dipole between the Philippine Sea and western Pacific. Lag-regression analysis shows that intraseasonal variability may play a significant role in event initiation and maintenance as opposed to being a benign response to increased SSTs. Recent observational evidence appears to support such a leading relationship.

Corresponding author address: Richard Neale, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: rneale@ucar.edu

Save
  • Achutarao, K., and K. R. Sperber, 2002: Simulation of the El Niño Southern Oscillation: Results from the Coupled Model Intercomparison Project. Climate Dyn., 19 , 191209.

    • Search Google Scholar
    • Export Citation
  • Achutarao, K., and K. R. Sperber, 2006: ENSO simulation in coupled ocean-atmosphere models: Are the current models better? Climate Dyn., 27 , 115.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Capotondi, A., A. Wittenberg, and S. Masina, 2006: Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Modell., 15 , 274298.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14 , 14791498.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006a: The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006b: The Community Climate System Model Version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Davey, M. K., and Coauthors, 2002: STOIC: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18 , 403420.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Capotondi, R. Saravanan, and A. Phillips, 2006: Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, 19 , 24512481.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and V. T. Phillips, 2003: Boundary layer control on convective available potential energy: Implications for cumulus parameterization. J. Geophys. Res., 108 .4701, doi:10.1029/2003JD003773.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., L. Yu, and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18 , 52245237.

  • Gregory, D. R., R. Kershaw, and P. M. Inness, 1997: Parameterization of momentum transport by convection II: Tests in single-column and general circulation models. Quart. J. Roy. Meteor. Soc., 123 , 11531183.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., and Coauthors, 2004: Representing El Niño in coupled ocean–atmosphere GCMs: The dominant role of the atmospheric component. J. Climate, 17 , 46234629.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and G. A. Vecchi, 1999: On the termination of El Niño. Geophys. Res. Lett., 26 , 15931596.

  • Hashizume, H., S. Xie, T. Liu, and K. Takeuchi, 2001: Local and remote atmospheric response due to tropical instability waves: A global view from space. J. Geophys. Res., 106 , 1017310185.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., M. C. Wheeler, and C. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20 , 531543.

  • Jin, F. F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Jochum, M., G. Danabasoglu, M. Holland, Y-O. Kwon, and W. G. Large, 2008: Ocean viscosity and climate. J. Geophys. Res., 113 .C06017, doi:10.1029/2007JC004515.

    • Search Google Scholar
    • Export Citation
  • Keen, R. A., 1982: The role of cross-equatorial cyclone pairs in the Southern Oscillation. Mon. Wea. Rev., 110 , 14051416.

  • Kershaw, R., and D. Gregory, 1997: Parameterization of momentum transport by convection. I: Theory and cloud modelling results. Quart. J. Roy. Meteor. Soc., 123 , 11331151.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29 .2125, doi:10.1029/2002GL015924.

  • Kim, D., J-S. Kug, I-S. Kang, F-F. Jin, and A. T. Wittenberg, 2008: Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Climate Dyn., 31 , 2–3. 213226.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., 1997: Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Climate, 10 , 16901704.

  • Lengaigne, M., J-P. Boulanger, C. Menkes, S. Masson, G. Madec, and P. Delacluse, 2002: Ocean response to the March 1997 Westerly Wind Event. J. Geophys. Res., 107 .8015, doi:10.1029/2001JC000841.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., J-P. Boulanger, C. Menkes, G. Madec, and P. Delecluse, 2003: The March 1997 Westerly Wind Event and the onset of the 1997–98 El Niño: Understanding the role of the atmospheric response. J. Climate, 16 , 33303343.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., E. Guilyardi, J-P. Boulanger, C. Mankes, P. Delecluse, P. Inness, J. Cole, and J. Slingo, 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23 , 601620.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, J-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20 , 44974525.

  • Lin, J-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19 , 26652690.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283 , 950954.

  • McPhaden, M. J., and X. Yu, 1999: Equatorial wave and the 1997–98 El Niño. Geophys. Res. Lett., 26 , 29612964.

  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13 , 35513559.

    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., A. J. Busalacchi, and J. Kindle, 1981: Ocean models of El Niño. Resource Management and Environmental Uncertainty: Lessons from Coastal Upwelling Fisheries, M. Glantz and D. Thompson, Eds., John Wiley and Sons, 159–212.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8 , 19992024.

  • Picaut, J., F. Masia, and Y. du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277 , 663666.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110 , 354384.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and A. M. Blyth, 1986: A stochastic mixing model for non-precipitating cumulus clouds. J. Atmos. Sci., 43 , 27082718.

  • Raymond, D. J., and A. M. Blyth, 1992: Extension of the stochastic mixing model to cumulonimbus clouds. J. Atmos. Sci., 49 , 19681983.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3 (CAM3). J. Climate, 21 , 14871499.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., and R. S. Lindzen, 1976: A discussion of the parameterization of momentum exchange by cumulus convection. J. Geophys. Res., 81 , 31583180.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 1999: Convective precursors and predictability in the tropical western Pacific. Mon. Wea. Rev., 127 , 29772991.

  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Song, X. L., X. Q. Wu, G. J. Guang, and R. Arritt, 2008: Dynamical effects of convective momentum transports on global climate simulations. J. Climate, 21 , 180194.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45 , 32833287.

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106 , 71837192.

  • Vecchi, G. A., 2006: The termination of the 1997–98 El Niño. Part II: Mechanisms of atmospheric change. J. Climate, 19 , 26472664.

  • Vecchi, G. A., and D. E. Harrison, 2000: Tropical Pacific SST anomalies, El Niño and equatorial westerly wind events. J. Climate, 13 , 18141830.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2001: A unified oscillator model of the El Niño–Southern Oscillation. J. Climate, 14 , 98115.

  • Wang, C., and J. Picault, 2004: Understanding ENSO physics—A review. Earth’s Climate: The Ocean-Atmosphere Interaction, C. Wang, S.-P. Xie, and J. A. Carton, Eds., Amer. Geophys. Union, 21–48.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, N-C. Lau, and J. J. Plashay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19 , 698722.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5 , 572584.

    • Search Google Scholar
    • Export Citation
  • Yu, L., R. A. Weller, and W. T. Liu, 2003: Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the Western Equatorial Pacific. J. Geophys. Res., 108 .3128, doi:10.1029/2002JC001498.

    • Search Google Scholar
    • Export Citation
  • Zavala-Garay, J., C. Zhang, A. M. Moore, and R. Kleeman, 2005: The linear response of ENSO to the Madden–Julian oscillation. J. Climate, 18 , 24412459.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial Pacific. J. Climate, 15 , 24292445.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33 , 407446.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2550 582 171
PDF Downloads 1067 253 15