Interannual Atmospheric Variability Affects Continental Ice Sheet Simulations on Millennial Time Scales

Michael S. Pritchard Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Michael S. Pritchard in
Current site
Google Scholar
PubMed
Close
,
Andrew B. G. Bush Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Andrew B. G. Bush in
Current site
Google Scholar
PubMed
Close
, and
Shawn J. Marshall Department of Geography, University of Calgary, Calgary, Alberta, Canada

Search for other papers by Shawn J. Marshall in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

To inform the ongoing development of earth system models that aim to incorporate interactive ice, the potential impact of interannual variability associated with synoptic variability and El Niño–Southern Oscillation (ENSO) at the Last Glacial Maximum (LGM) on the evolution of a large continental ice sheet is explored through a series of targeted numerical modeling experiments. Global and North American signatures of ENSO at the LGM are described based on a multidecadal paleoclimate simulation using an atmosphere–ocean general circulation model (AOGCM). Experiments in which a thermomechanical North American ice sheet model (ISM) was forced with persistent LGM ENSO composite anomaly maps derived from the AOGCM showed only modest ice sheet thickness sensitivity to ENSO teleconnections. In contrast, very high model sensitivity was found when North American climate variations were incorporated directly in the ISM as a looping interannual time series. Under this configuration, localized transient cold anomalies in the atmospheric record instigated substantial new ice formation through a dynamically mediated feedback at the ice sheet margin, altering the equilibrium geometry and resulting in a bulk 10% growth of the Laurentide ice sheet volume over 5 kyr.

Corresponding author address: Michael S. Pritchard, Scripps Graduate Department, Mail Code 0224, 9500 Gilman Drive, La Jolla, CA 92093-0224. Email: mikepritchard@ucsd.edu

This article included in the Polar Climate Stability special collection.

Abstract

To inform the ongoing development of earth system models that aim to incorporate interactive ice, the potential impact of interannual variability associated with synoptic variability and El Niño–Southern Oscillation (ENSO) at the Last Glacial Maximum (LGM) on the evolution of a large continental ice sheet is explored through a series of targeted numerical modeling experiments. Global and North American signatures of ENSO at the LGM are described based on a multidecadal paleoclimate simulation using an atmosphere–ocean general circulation model (AOGCM). Experiments in which a thermomechanical North American ice sheet model (ISM) was forced with persistent LGM ENSO composite anomaly maps derived from the AOGCM showed only modest ice sheet thickness sensitivity to ENSO teleconnections. In contrast, very high model sensitivity was found when North American climate variations were incorporated directly in the ISM as a looping interannual time series. Under this configuration, localized transient cold anomalies in the atmospheric record instigated substantial new ice formation through a dynamically mediated feedback at the ice sheet margin, altering the equilibrium geometry and resulting in a bulk 10% growth of the Laurentide ice sheet volume over 5 kyr.

Corresponding author address: Michael S. Pritchard, Scripps Graduate Department, Mail Code 0224, 9500 Gilman Drive, La Jolla, CA 92093-0224. Email: mikepritchard@ucsd.edu

This article included in the Polar Climate Stability special collection.

Save
  • AchutaRao, K., and K. R. Sperber, 2002: Simulation of the El Niño Southern Oscillation: Results from the Coupled Model Intercomparison Project. Climate Dyn., 19 , 191209.

    • Search Google Scholar
    • Export Citation
  • An, S. I., and B. Wang, 2005: The forced and intrinsic low-frequency modes in the North Pacific. J. Climate, 18 , 876885.

  • Berger, A., and M. F. Loutre, 1991: Insolation values for the climate of the last 10 million years. Quat. Sci. Rev., 10 , 297317.

  • Berger, W. H., and U. von Rad, 2005: Decadal to millennial cyclicity in varves and turbidites from the Arabian Sea: Hypothesis of tidal origin. Global Planet. Change, 34 , 3–4. 313325.

    • Search Google Scholar
    • Export Citation
  • Braithwaite, R. J., 1995: Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. J. Glaciol., 41 , 153160.

    • Search Google Scholar
    • Export Citation
  • Braithwaite, R. J., and Y. Zhang, 2000: Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model. J. Glaciol., 46 , 714.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., E. R. Toracinta, H. Wei, R. J. Oglesby, J. L. Fastook, and T. J. Hughes, 2004: Polar MM5 simulation of the winter climate of the Laurentide ice sheet at the LGM. J. Climate, 17 , 34153433.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1969: A numerical method for the study of the circulation of the world ocean. J. Comput. Phys., 3 , 347376.

  • Bush, A. B. G., 2002: A comparison of simulated monsoon circulations and snow accumulation in Asia during the mid-Holocene and at the Last Glacial Maximum. Global Planet. Change, 32 , 331347.

    • Search Google Scholar
    • Export Citation
  • Bush, A. B. G., 2007: Extratropical influence of the El Niño–Southern Oscillation through the late Quaternary. J. Climate, 20 , 788800.

    • Search Google Scholar
    • Export Citation
  • Bush, A. B. G., and S. G. H. Philander, 1998: The role of ocean-atmosphere interactions in tropical cooling during the last glacial maximum. Science, 279 , 13411344.

    • Search Google Scholar
    • Export Citation
  • Bush, A. B. G., and S. G. H. Philander, 1999: The climate of the Last Glacial Maximum: Results from a coupled atmosphere-ocean general circulation model. J. Geophys. Res., 104 , D29. 2450924525.

    • Search Google Scholar
    • Export Citation
  • CLIMAP, 1981: Seasonal reconstructions of the earth’s surface at the last glacial maximum. Geological Society of America Map and Chart Series, Tech. Rep. MC-36, 17 pp.

  • DeWeaver, E., and S. Nigam, 2004: On the forcing of ENSO teleconnections by anomalous heating and cooling. J. Climate, 17 , 32253235.

  • Fairbanks, R. G., 1989: A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on Younger Dryas event and deep-ocean circulation. Nature, 342 , 637642.

    • Search Google Scholar
    • Export Citation
  • Fanning, A. F., and A. J. Weaver, 1996: An atmospheric energy-moisture balance model: Climatology, interpentadal climate change, and coupling to an ocean general circulation model. J. Geophys. Res., 101 , 1511115128.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., and H. Renssen, 2004: Exciting natural modes of variability by solar and volcanic forcing: Idealized and realistic experiments. Climate Dyn., 23 , 153163.

    • Search Google Scholar
    • Export Citation
  • Gordon, C. T., and W. Stern, 1982: A description of the GFDL global spectral model. Mon. Wea. Rev., 110 , 625644.

  • Hall, J. M., and L. H. Chan, 2004: Ba/Ca in benthic foraminifera: Thermocline and middepth circulation in the North Atlantic during the last deglaciation. Paleoceanography, 19 .PA4018, doi:10.1029/2004PA001028.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., 2001: Toward a nonlinear identification of the atmospheric response to ENSO. J. Climate, 14 , 21382149.

  • Hostetler, S., N. Pisias, and A. Mix, 2006: Sensitivity of last glacial maximum climate to uncertainties in tropical and subtropical ocean temperatures. Quat. Sci. Rev., 25 , 11–12. 11681185.

    • Search Google Scholar
    • Export Citation
  • Huybrechts, P., 1990: A 3-D model for the Antarctic ice sheet: A sensitivity study on the glacial-interglacial contrast. Climate Dyn., 5 , 7992.

    • Search Google Scholar
    • Export Citation
  • Huybrechts, P., and J. de Wolde, 1999: The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Climate, 12 , 21692188.

    • Search Google Scholar
    • Export Citation
  • Huybrechts, P., J. Gregory, I. Janssens, and M. Wild, 2004: Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Global Planet. Change, 42 , 1–4. 83105.

    • Search Google Scholar
    • Export Citation
  • Jenssen, D., 1977: A three-dimensional polar ice sheet model. J. Glaciol., 18 , 373389.

  • Jòhannesson, T., O. Sigurdsson, T. Laumann, and M. Kennett, 1995: Degree-day glacier mass-balance modelling with application to glaciers in Iceland, Norway, and Greenland. J. Glaciol., 41 , 345358.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Mahaffy, M. W., 1976: A three-dimensional numerical model of ice sheets: Tests on the Barnes Ice Cap, Northwest Territories. J. Geophys. Res., 81 , B6. 10591066.

    • Search Google Scholar
    • Export Citation
  • Marshall, S. J., and G. K. C. Clarke, 1997: A continuum mixture model of ice stream thermomechanics in the Laurentide ice sheet. 1. Theory. J. Geophys. Res., 102 , B9. 2059920613.

    • Search Google Scholar
    • Export Citation
  • Marshall, S. J., and P. U. Clark, 2002: Basal temperature evolution of North American ice sheets and implications for the 100-kyr cycle. Geophys. Res. Lett., 29 .2214, doi:10.1029/2002GL015192.

    • Search Google Scholar
    • Export Citation
  • Marshall, S. J., L. Tarasov, G. K. C. Clarke, and W. R. Peltier, 2000: Glaciological reconstruction of the Laurentide ice sheet: Physical processes and modelling challenges. Can. J. Earth Sci., 37 , 769793.

    • Search Google Scholar
    • Export Citation
  • Marshall, S. J., T. S. James, and G. K. C. Clarke, 2002: North American ice sheet reconstructions at the Last Glacial Maximum. Quat. Sci. Rev., 21 , 175192.

    • Search Google Scholar
    • Export Citation
  • Mysak, L. A., R. G. Ingram, J. Wang, and A. van der Baaren, 1996: The anomalous sea-ice extent in Hudson Bay, Baffin Bay and the Labrador Sea during three simultaneous NAO and ENSO episodes. Atmos.–Ocean, 34 , 313343.

    • Search Google Scholar
    • Export Citation
  • Newman, M., G. P. Compo, and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16 , 38533857.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., S. J. Marshall, J. T. Overpeck, G. H. Miller, and A. Hu, 2006: Simulating Arctic climate warmth and ice field retreat in the last interglaciation. Science, 311 , 17511753.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11 , 14431451.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., K. Dixon, and A. Rosati, 1991: The GFDL modular ocean model user guide. Geophysical Fluid Dynamics Laboratory Tech. Rep. 2, 17 pp.

  • Peltier, W. R., 1985: The LAGEOS constraint on deep mantle viscosity: Results from a new normal mode method for the inversion of viscoelastic relaxation spectra. J. Geophys. Res., 90 , 94119421.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 1994: Ice-age paleotopography. Science, 265 , 195201.

  • Peltier, W. R., and L. P. Solheim, 2004: The climate of the earth at Last Glacial Maximum: Statistical equilibrium state and a mode of internal variability. Quat. Sci. Rev., 23 , 3–4. 335357.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., A. B. G. Bush, and S. J. Marshall, 2008: Neglecting ice-atmosphere interactions underestimates ice sheet melt in millennial-scale deglaciation simulations. Geophys. Res. Lett., 35 .L01503, doi:10.1029/2007GL031738.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110 , 5. 354384.

    • Search Google Scholar
    • Export Citation
  • Ridley, J. K., P. Huybrechts, J. M. Gregory, and J. A. Lowe, 2005: Elimination of the Greenland ice sheet in a high CO2 climate. J. Climate, 18 , 34093427.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., G. Lohmann, S. Lorenz, R. Schneider, and G. M. Henderson, 2003: A tropical mechanism for Northern Hemisphere deglaciation. Geochem. Geophys. Geosyst., 4 .1046, doi:10.1029/2003GC000508.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., and Coauthors, 2004: Sensitivity of Northern Hemispheric continental ice sheets to tropical SST during deglaciation. Geophys. Res. Lett., 31 .L02206, doi:10.1029/2003GL018375.

    • Search Google Scholar
    • Export Citation
  • Rosenthal, Y., and A. J. Broccoli, 2004: In search of paleo-ENSO. Science, 304 , 219221.

  • Schneider, N., and B. D. Comuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18 , 43554373.

  • Shin, S. I., Z. Liu, B. Otto-Bliesner, E. C. Brady, J. E. Kutzbach, and S. P. Harrison, 2003: A simulation of the Last Glacial Maximum climate using the NCAR-CCSM. Climate Dyn., 20 , 2–3. 127151.

    • Search Google Scholar
    • Export Citation
  • Slonosky, V. C., L. A. Mysak, and J. Derome, 1997: Linking Arctic sea-ice and atmospheric circulation anomalies on interannual and decadal timescales. Atmos.–Ocean, 35 , 333366.

    • Search Google Scholar
    • Export Citation
  • Stott, L., C. Poulsen, S. Lund, and R. Thunell, 2002: Super ENSO and global climate oscillations at millennial time scales. Science, 297 , 222226.

    • Search Google Scholar
    • Export Citation
  • Straus, D. M., and J. Shukla, 2002: Does ENSO force the PNA? J. Climate, 15 , 23402358.

  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78 , 27712777.

  • Trenberth, K. E., J. M. Caron, D. P. Stepaniak, and S. Worley, 2002: Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107 .4065, doi:10.1029/2000JD000298.

    • Search Google Scholar
    • Export Citation
  • Tudhope, A. W., and Coauthors, 2001: Variability in the El Niño Southern Oscillation through a glacial-interglacial cycle. Science, 291 , 15111517.

    • Search Google Scholar
    • Export Citation
  • Van der Avoird, E., H. A. Djikstra, J. J. Nauw, and C. J. E. Schuurmans, 2002: Nonlinearly induced low-frequency variability in a midlatitude coupled ocean-atmosphere model of intermediate complexity. Climate Dyn., 19 , 3–4. 303320.

    • Search Google Scholar
    • Export Citation
  • Wang, X., A. S. Auler, R. L. Edwards, H. Cheng, P. S. Cristaili, P. L. Smart, D. A. Richards, and C-C. Shen, 2004: Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature, 432 , 740743.

    • Search Google Scholar
    • Export Citation
  • Wu, A., and W. W. Hsieh, 2004: The nonlinear patterns of North American winter temperature and precipitation associated with ENSO. J. Climate, 18 , 17361752.

    • Search Google Scholar
    • Export Citation
  • Wu, P., and W. R. Peltier, 1982: Viscous gravitational relaxation. Geophys. J. Roy. Astron. Soc., 70 , 435485.

  • Yin, J. H., and D. S. Battisti, 2001: The importance of tropical sea surface temperature patterns in simulations of Last Glacial Maximum climate. J. Climate, 14 , 565581.

    • Search Google Scholar
    • Export Citation