• Barsguli, J. J., , and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55 , 477493.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , M. Widmann, , V. P. Dymnikov, , J. M. Wallace, , and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12 , 19902009.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., , G. Madec, , A. S. Fischer, , A. Lazar, , and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109 .C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , M. A. Alexander, , and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16 , 5772.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. Rev. Geophys., 23 , 357390.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., , and K. Hasselman, 1977: Stochastic climate models. Part II: Application to sea-surface temperature variability and thermocline variability. Tellus, 29 , 289305.

    • Search Google Scholar
    • Export Citation
  • Hall, A., , and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15 , 30433057.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., , C. M. Bitz, , and E. C. Hunke, 2005: Mechanisms forcing an Antarctic dipole in simulated sea ice and surface ocean conditions. J. Climate, 18 , 20522066.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2 , 12391252.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1990: The role of transient eddies in low-frequency zonal variations of the Southern Hemisphere circulation. Tellus, 42A , 4150.

    • Search Google Scholar
    • Export Citation
  • Karsten, R. H., , and J. Marshall, 2002: Constructing the residual circulation of the ACC from observations. J. Phys. Oceanogr., 32 , 33153327.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., 1988: Interannual variations in the Southern Hemisphere circulation. J. Climate, 1 , 11771198.

  • Kidson, J. W., , and J. A. Renwick, 2002: The Southern Hemisphere evolution of ENSO during 1981–1999. J. Climate, 15 , 847863.

  • Kiladis, G. N., , and K. C. Mo, 1998: Interannual and intraseasonal variability in the Southern Hemisphere. Meteorology of the Southern Hemisphere, Meteor. Monogr., No. 49, Amer. Meteor. Soc., 307–336.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Lefebvre, W., , H. Goosse, , R. Timmermann, , and T. Fichefet, 2004: Influence of the Southern Annular Mode on the sea ice–ocean system. J. Geophys. Res., 109 .C09005, doi:10.1029/2004JC002403.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., , and D. W. J. Thompson, 2006: Observed relationships between El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19 , 276287.

    • Search Google Scholar
    • Export Citation
  • Li, Z. X., 2000: Influence of tropical Pacific El Niño on the SST of the Southern Ocean through atmospheric bridge. Geophys. Res. Lett., 27 , 35053508.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and D. L. Hartmann, 2001: Eddy-zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58 , 33123327.

  • Lovenduski, N. S., , and N. Gruber, 2005: Impact of the Southern Annular Mode on Southern Ocean circulation and biology. Geophys. Res. Lett., 32 .L11603, doi:10.1029/2005GL022727.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., , and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett., 33 .L16608, doi:10.1029/2006GL026499.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., , P. L. Woodworth, , C. W. Hughes, , and V. Stepanov, 2004: Changes in the ocean transport through Drake Passage during the 1980s and 1990s, forced by changes in the Southern Annular Mode. Geophys. Res. Lett., 31 .L21305, doi:10.1029/2004GL021169.

    • Search Google Scholar
    • Export Citation
  • Newman, M., 2007: Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J. Climate, 20 , 23332356.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., , D. B. Chelton, , and S. K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Climate, 16 , 23402354.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., 2002: Southern Hemisphere circulation and relations with sea ice and sea surface temperature. J. Climate, 15 , 30583068.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , and T. M. Smith, 1994: Improved global sea surface temperature analysis using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , N. Rayner, , T. M. Smith, , D. C. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Sardesmukh, P. D., , and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45 , 12281251.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., , and M. H. England, 2006: Coupled ocean–atmosphere–ice response to variations in the Southern Annular Mode. J. Climate, 19 , 44574486.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Verdy, A., , J. Marshall, , and A. Czaja, 2006: Sea surface temperature variability along the path of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 36 , 13171331.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2000: Southern midlatitude zonal wind vacillation and its interaction with the ocean in GCM simulations. J. Climate, 13 , 562578.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., , R. J. Slutz, , R. L. Jenne, , and P. M. Steurer, 1987: A comprehensive ocean-atmosphere data set. Bull. Amer. Meteor. Soc., 68 , 12391250.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 67 67 12
PDF Downloads 58 58 6

Observations of Large-Scale Ocean–Atmosphere Interaction in the Southern Hemisphere

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

The authors provide a detailed examination of observed ocean–atmosphere interaction in the Southern Hemisphere (SH). Focus is placed on the observed relationships between variability in SH extratropical sea surface temperature (SST) anomalies, the Southern Annular Mode (SAM), and the El Niño–Southern Oscillation (ENSO). Results are examined separately for the warm (November–April) and cold (May–October) seasons and for monthly and weekly time scales. It is shown that the signatures of the SAM and ENSO in the SH SST field vary as a function of season, both in terms of their amplitudes and structures. The role of surface turbulent and Ekman heat fluxes in driving seasonal variations in the SAM- and ENSO-related SST anomalies is investigated. Analyses of weekly data reveal that variability in the SAM tends to precede anomalies in the SST field by ∼1 week, and that the e-folding time scale of the SAM-related SST field anomalies is at least 4 months. The persistence of the SAM-related SST anomalies is consistent with the passive thermal response of the Southern Ocean to variations in the SAM, and seasonal variations in the persistence of the SAM-related SST anomalies are consistent with the seasonal cycle in the depth of the ocean mixed layer.

Corresponding author address: Laura M. Ciasto, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523-1371. Email: lciasto@atmos.colostate.edu

Abstract

The authors provide a detailed examination of observed ocean–atmosphere interaction in the Southern Hemisphere (SH). Focus is placed on the observed relationships between variability in SH extratropical sea surface temperature (SST) anomalies, the Southern Annular Mode (SAM), and the El Niño–Southern Oscillation (ENSO). Results are examined separately for the warm (November–April) and cold (May–October) seasons and for monthly and weekly time scales. It is shown that the signatures of the SAM and ENSO in the SH SST field vary as a function of season, both in terms of their amplitudes and structures. The role of surface turbulent and Ekman heat fluxes in driving seasonal variations in the SAM- and ENSO-related SST anomalies is investigated. Analyses of weekly data reveal that variability in the SAM tends to precede anomalies in the SST field by ∼1 week, and that the e-folding time scale of the SAM-related SST field anomalies is at least 4 months. The persistence of the SAM-related SST anomalies is consistent with the passive thermal response of the Southern Ocean to variations in the SAM, and seasonal variations in the persistence of the SAM-related SST anomalies are consistent with the seasonal cycle in the depth of the ocean mixed layer.

Corresponding author address: Laura M. Ciasto, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523-1371. Email: lciasto@atmos.colostate.edu

Save