• Barlow, M., H. Cullen, and B. Lyon, 2002: Drought in Central and Southeast Asia: La Niña, the warm pool, and Indian Ocean precipitation. J. Climate, 15 , 697700.

    • Search Google Scholar
    • Export Citation
  • Chang, C. P., Z. Wang, J. Ju, and T. Li, 2004: On the relationship between western maritime continent monsoon rainfall and ENSO during northern winter. J. Climate, 17 , 665672.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Gleisner, H., and P. Thejll, 2003: Patterns of tropospheric response to solar variability. Geophys. Res. Lett., 30 .1711, doi:10.1029/2003GL017129.

    • Search Google Scholar
    • Export Citation
  • Gong, D. Y., and C. H. Ho, 2002: The Siberian High and climate change over middle to high latitude Asia. Theor. Appl. Climatol., 72 , 19.

    • Search Google Scholar
    • Export Citation
  • Gong, D. Y., and C. H. Ho, 2004: Intra-seasonal variability of wintertime temperature over East Asia. Int. J. Climatol., 24 , 131144.

  • Harger, J. R. E., 1995: Air-temperature variations and ENSO effects in Indonesia, the Philippines and El Salvador. ENSO patterns and changes from 1866–1993. Atmos. Environ., 29 , 19191942.

    • Search Google Scholar
    • Export Citation
  • Honda, M., and H. Nakamura, 2001: Interannual seesaw between the Aleutian and Icelandic lows. Part II: Its significance in the interannual variability over the wintertime Northern Hemisphere. J. Climate, 14 , 45124529.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109 , 813829.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50 , 16611671.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1996: Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett., 23 , 665668.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and H. van Loon, 1997: Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change, 36 , 301326.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and A. Moberg, 2003: Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J. Climate, 16 , 206223.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Karl, T. R., R. W. Knight, and B. Baker, 2000: The record breaking global temperatures of 1997 and 1998: Evidence for an increase in the rate of global warming. Geophys. Res. Lett., 27 , 719722.

    • Search Google Scholar
    • Export Citation
  • Kodera, K., 2002: Solar cycle modulation of the North Atlantic Oscillation: Implication in the spatial structure of the NAO. Geophys. Res. Lett., 29 .1281, doi:10.1029/2001GL014557.

    • Search Google Scholar
    • Export Citation
  • Kodera, K., 2003: Solar influence on the spatial structure of the NAO during the winter 1900–1999. Geophys. Res. Lett., 30 .1175, doi:10.1029/2002GL016584.

    • Search Google Scholar
    • Export Citation
  • Kodera, K., and Y. Kuroda, 2002: Dynamical response to the solar cycle. J. Geophys. Res., 107 .4749, doi:10.1029/2002JD002224.

  • Kubota, T., and T. Terao, 2004: Interdecadal variability of the seasonal-scale persistence in the tropical mean tropospheric temperature. J. Meteor. Soc. Japan, 82 , 12131221.

    • Search Google Scholar
    • Export Citation
  • Lassen, K., and E. Friis-Christensen, 1995: Variability of the solar cycle length during the past five centuries and the apparent association with terrestrial climate. J. Atmos. Solar-Terr. Phys., 57 , 835845.

    • Search Google Scholar
    • Export Citation
  • Lohmann, G., N. Rimbu, and M. Dima, 2004: Climate signature of solar irradiance variations: Analysis of long-term instrumental, historical, and proxy data. Int. J. Climatol., 24 , 10451056.

    • Search Google Scholar
    • Export Citation
  • Malhi, Y., and J. Wright, 2004: Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos. Trans. Roy. Soc. London, 359 , 311329.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2543.

  • McHugh, M. J., and J. C. Rogers, 2001: North Atlantic Oscillation influence on precipitation variability around the Southeast African convergence zone. J. Climate, 14 , 36313642.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and H. Van Loon, 1979: The seesaw in winter temperatures between Greenland and Northern Europe. Part III: Teleconnections with lower latitudes. Mon. Wea. Rev., 107 , 10951106.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., G. N. Kiladis, K. M. Weickmann, M. Wheeler, D. S. Gutzler, and G. P. Compo, 1996: Modulation of equatorial subseasonal convective episodes by tropical–extratropical interaction in the Indian and Pacific Ocean regions. J. Geophys. Res., 101 , 1503315049.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • Panagiotopoulos, F., M. Shahgedanova, A. Hannachi, and D. B. Stephenson, 2005: Observed trends and teleconnections of the Siberian High: A recently declining center of action. J. Climate, 18 , 14111422.

    • Search Google Scholar
    • Export Citation
  • Rao, Y. P., 1981: The climate of the Indian subcontinent. World Survey of Climatology, K. Takahashi and H. Arakawa, Eds., Vol. 9, Climates of Southern and Western Asia, Elsevier Scientific Publishing Company, 67–182.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and D. J. Lorenz, 2004: The signature and the annual modes in the tropical troposphere. J. Climate, 17 , 43304342.

    • Search Google Scholar
    • Export Citation
  • Tomita, T., and T. Yasunari, 1996: Role of the northeast winter monsoon on the biennial oscillation of the ENSO/Monsoon system. J. Meteor. Soc. Japan, 74 , 399413.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109 , 784812.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and D. Gong, 2000: Enhancement of the warming trend in China. Geophys. Res. Lett., 27 , 25812584.

  • Watanabe, M., and T. Nitta, 1999: Decadal changes in the atmospheric circulation and associated surface climate variations in the Northern Hemisphere winter. J. Climate, 12 , 494510.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., H. Noguchi, and S. Matsumura, 1999: A hemispheric-scale quasi-decadal oscillation and its signature in Northern Japan. J. Meteor. Soc. Japan, 77 , 573582.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., and T. Tomita, 1998: Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP–NCAR reanalysis. J. Climate, 11 , 463482.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., M. Nishimori, and T. Mito, 1998: Trends and inter-decadal variations of the surface and lower-tropospheric temperature in the Northern Hemisphere from 1964 to 93. J. Meteor. Soc. Japan, 76 , 517531.

    • Search Google Scholar
    • Export Citation
  • Yatagai, A., and T. Yasunari, 1994: Trends and decadal-scale fluctuation of surface air temperature and precipitation over China and Mongolia during the recent 40 year period (1951–90). J. Meteor. Soc. Japan, 72 , 937957.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and A. Sumi, 2002: Moisture circulation over East Asia during El Niño episode in northern winter, spring and autumn. J. Meteor. Soc. Japan, 80 , 213227.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997: Climatology and interannual variation of the East Asian Winter Monsoon: Results from the 1979–95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125 , 26052619.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2 2 2
PDF Downloads 2 2 2

Dominant Interannual and Decadal Variability of Winter Surface Air Temperature over Asia and the Surrounding Oceans

View More View Less
  • 1 National Institute for Environmental Studies, Tsukuba, Japan
  • | 2 Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya, Japan
Restricted access

Abstract

To clarify the interannual variability of winter surface air temperature (SAT) over Asia and the surrounding oceans, the authors applied principal component analysis to normalized monthly SATs. The first mode represents the Asian north–south dipole pattern with a node over the Tibetan Plateau. This component has close relationships to the Arctic Oscillation and cold surge variability around Southeast Asia, showing decadal oscillation with signal changes in 1988 and 1997. The second mode is the inner-Asian mode with a center to the north of the Tibetan Plateau. This component connects to fluctuations of not only the western Siberian high but also the Icelandic low, which is associated with the pattern of the polar vortex over Eurasia. A recent warming trend and possible relationship to solar activity are also shown. The modes of Asian SAT variability associated with ENSO are extracted as the north–south dipole mode over the tropical western Pacific and Japan (the third mode) and Silk Road mode (the fourth mode). The two independent modes appear to be caused by different sea surface temperature (SST) anomalies over the western Pacific and Indian Ocean and their associated atmospheric Rossby wave responses: the atmospheric wave trains over both the north and south of the Tibetan Plateau in the third mode, and the atmospheric wave train that propagates toward the Silk Road via Greenland in the fourth mode.

Corresponding author address: Tetsuzo Yasunari, Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan. Email: yasunari@hyarc.nagoya-u.ac.jp

Abstract

To clarify the interannual variability of winter surface air temperature (SAT) over Asia and the surrounding oceans, the authors applied principal component analysis to normalized monthly SATs. The first mode represents the Asian north–south dipole pattern with a node over the Tibetan Plateau. This component has close relationships to the Arctic Oscillation and cold surge variability around Southeast Asia, showing decadal oscillation with signal changes in 1988 and 1997. The second mode is the inner-Asian mode with a center to the north of the Tibetan Plateau. This component connects to fluctuations of not only the western Siberian high but also the Icelandic low, which is associated with the pattern of the polar vortex over Eurasia. A recent warming trend and possible relationship to solar activity are also shown. The modes of Asian SAT variability associated with ENSO are extracted as the north–south dipole mode over the tropical western Pacific and Japan (the third mode) and Silk Road mode (the fourth mode). The two independent modes appear to be caused by different sea surface temperature (SST) anomalies over the western Pacific and Indian Ocean and their associated atmospheric Rossby wave responses: the atmospheric wave trains over both the north and south of the Tibetan Plateau in the third mode, and the atmospheric wave train that propagates toward the Silk Road via Greenland in the fourth mode.

Corresponding author address: Tetsuzo Yasunari, Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan. Email: yasunari@hyarc.nagoya-u.ac.jp

Save