• Allan, R., and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19 , 58165842.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115 , 10831126.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., R. A. Madden, J. M. Wallace, and D. S. Gutzler, 1979: Geographical variations in the vertical structure of geopotential height fluctuations. J. Atmos. Sci., 36 , 24502466.

    • Search Google Scholar
    • Export Citation
  • Bonsal, B. R., X. Zhang, and W. D. Hogg, 1999: Canadian Prairie growing season precipitation variability and associated atmospheric circulation. Climate Res., 11 , 191208.

    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., 2003: A historical upper air-data set for the 1939–44 period. Int. J. Climatol., 23 , 769791.

  • Brönnimann, S., T. Ewen, T. Griesser, and R. Jenne, 2006: Multidecadal signal of solar variability in the upper troposphere during the 20th century. Space Sci. Rev., 125 , 305317.

    • Search Google Scholar
    • Export Citation
  • Chen, P., and M. Newman, 1998: Rossby wave propagation and the rapid development of upper-level anomalous anticyclones during the 1988 U.S. drought. J. Climate, 11 , 24912504.

    • Search Google Scholar
    • Export Citation
  • Collins, W., and Coauthors, 2006: The Community Climate System Model Version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Cook, E. R., K. R. Briffa, and P. D. Jones, 1994: Spatial regression methods in dendroclimatology: A review and comparison of two techniques. Int. J. Climatol., 14 , 379402.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the Tropics and North Pacific during boreal winter since 1900. J. Climate, 17 , 31093124.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Capotondi, R. Saravanan, and A. S. Phillips, 2006: Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, 19 , 24512481.

    • Search Google Scholar
    • Export Citation
  • Ewen, T., A. Grant, and S. Brönnimann, 2008: A monthly upper-air dataset for North America back to 1922 from the Monthly Weather Review. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Garnett, R., 2001: The Canadian Prairie drought of 2001: A four billion dollar shortfall. CMOS Bull., 30 , 3739.

  • Hansen, J., R. Ruedy, J. Glascoe, and M. Sato, 1999: GISS analysis of surface temperature change. J. Geophys. Res., 104 , 3099731022.

  • Hoerling, M., and A. Kumar, 2003: The perfect ocean for drought. Science, 299 , 691694.

  • Holland, M., 2003: The North Atlantic Oscillation–Arctic Oscillation in the CCSM2 and its influence on Arctic climate variability. J. Climate, 16 , 27672781.

    • Search Google Scholar
    • Export Citation
  • Honda, M., H. Nakamura, J. Ukita, I. Kousaka, and K. Takeuchi, 2001: Interannual seesaw between the Aleutian and Icelandic lows. Part I: Seasonal dependence and life cycle. J. Climate, 14 , 10291041.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and A. Moberg, 2003: Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J. Climate, 16 , 206223.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kiehl, J. T., and P. R. Gent, 2004: The Community Climate System Model, version 2. J. Climate, 17 , 36663682.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247268.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1994: Causes of decadel climate variability in the North Pacific/North Atlantic sector. Science, 266 , 634637.

    • Search Google Scholar
    • Export Citation
  • Leathers, D. J., and M. A. Palecki, 1992: The Pacific/North American teleconnection pattern and United States climate. Part II: Temporal characteristics and index specification. J. Climate, 5 , 707716.

    • Search Google Scholar
    • Export Citation
  • Leathers, D. J., B. Yarnal, and M. A. Palecki, 1991: The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations. J. Climate, 4 , 517528.

    • Search Google Scholar
    • Export Citation
  • Maybank, J., B. R. Bonsal, K. Jones, R. Lawford, E. G. O’Brien, E. Ripley, and E. Wheaton, 1995: Drought as a disaster. Atmos.–Ocean, 33 , 195222.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1978: Multiple causes of the North American abnormal winter 1976–77. Mon. Wea. Rev., 106 , 279295.

  • Newman, M., G. P. Compo, and M. A. Alexander, 2003: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16 , 38533857.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2005: The Arctic climate paradox: The recent decrease of the Arctic Oscillation. Geophys. Res. Lett., 32 .L06701, doi:10.1029/2004GL021752.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and R. S. Vose, 1997: An overview of the Global Historical Climatology Network temperature database. Bull. Amer. Meteor. Soc., 78 , 28372849.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., R. V. Bekryaev, U. S. Bhatt, R. L. Colony, A. P. Maskshtas, D. Walsh, G. V. Alekseev, and M. A. Johnson, 2003: Variability and trends of air temperature and pressure in the maritime Arctic, 1875–2000. J. Climate, 16 , 20672077.

    • Search Google Scholar
    • Export Citation
  • Quadrelli, R., and J. M. Wallace, 2004: A simplified linear framework for interpreting patterns of Northern Hemisphere wintertime climate variability. J. Climate, 17 , 37283744.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., 1996: Interdecadal variability in a multicentury climate integration. Climate Dyn., 12 , 227241.

  • Robertson, A. W., and M. Ghil, 1999: Large-scale weather regimes and local climate over the western United States. J. Climate, 12 , 17961813.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: On the cause of the 1930s Dust Bowl. Science, 303 , 18551859.

    • Search Google Scholar
    • Export Citation
  • Shabbar, A., K. Higuchi, and J. L. Knox, 1990: Regional analysis of Northern Hemisphere 50 kPa geopotential heights from 1946 to 1985. J. Climate, 3 , 543557.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., 1982: The forcing of planetary wave motion by tropical diabatic heating. Quart. J. Roy. Meteor. Soc., 108 , 503534.

  • Straus, D. M., and J. Shukla, 2002: Does ENSO force the PNA? J. Climate, 15 , 23402358.

  • Trenberth, K. E., 1990: Recent observed interdecadal climate changes in the Northern Hemisphere. Bull. Amer. Meteor. Soc., 71 , 988993.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and G. W. Branstator, 1992: Issues in establishing causes of the 1988 drought over North America. J. Climate, 5 , 159172.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmospheric-ocean variations in the Pacific. Climate Dyn., 9 , 303319.

  • Trenberth, K. E., and C. J. Guillemot, 1996: Physical processes involved in the 1988 drought and 1993 flood in North America. J. Climate, 9 , 12881298.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, and P. A. Arkin, 1988: Origins of the 1988 North American drought. Science, 242 , 16401645.

  • von Storch, H., E. Zorita, J. M. Jones, Y. Dimitriev, F. Gonzalez-Rouco, and S. F. B. Tett, 2004: Reconstructing past climate from noisy data. Science, 306 , 679682.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109 , 784812.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. Thompson, 2002: The Pacific center of action of the Northern Hemisphere annular mode: Real or artifact? J. Climate, 15 , 19871991.

    • Search Google Scholar
    • Export Citation
  • Xie, P., J. E. Janowiak, P. A. Arkin, R. Adler, G. J. Huffman, S. Curtis, A. Gruber, and R. Ferraro, 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16 , 21972214.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 0 0 0
PDF Downloads 0 0 0

An Extended Pacific–North American Index from Upper-Air Historical Data Back to 1922

View More View Less
  • 1 Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
Restricted access

Abstract

This paper presents a reconstruction of a Pacific–North America (PNA) index from historical upper-level data for the period 1922–47. The data have been compiled from a number of sources and cover the Pacific–North American sector relatively well over this time period. Temperature and geopotential height profiles from aircraft, kite, and radiosonde ascents back to 1922 have been digitized and validated. Wind speed and direction from pilot balloon data back to the early 1920s, provided by NCAR, have also been used. A statistical regression approach is used for the reconstruction and calibrated in the post-1948 period using NCEP–NCAR reanalysis data. Split-sample validation experiments were performed within the NCEP–NCAR period, and sensitivity experiments with different subsets of predictors were performed. Similar reconstructions and validation experiments were carried out using a 540-yr control run from the Community Climate System Model, version 3 (CCSM3). The reconstructed index series together with validation statistics for both the historical and model data are presented. Excellent reconstruction skill is found for the winter months, while the reconstructions are somewhat worse in summer. Compared with a reconstruction based only on surface data, the addition of the newly digitized upper-air stations improves the reconstruction skill in all seasons. The historical reconstruction is presented with respect to its imprint on hemispheric fields of surface air temperature, sea level pressure, and precipitation with a special focus on extreme cases. In addition, the extended PNA index is compared with indices of the North Atlantic Oscillation, the Pacific decadal oscillation, and the El Niño–Southern Oscillation. The relationship to these indices is found to be stationary over the analysis period.

Corresponding author address: Tracy Ewen, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland. Email: tracy.ewen@env.ethz.ch

Abstract

This paper presents a reconstruction of a Pacific–North America (PNA) index from historical upper-level data for the period 1922–47. The data have been compiled from a number of sources and cover the Pacific–North American sector relatively well over this time period. Temperature and geopotential height profiles from aircraft, kite, and radiosonde ascents back to 1922 have been digitized and validated. Wind speed and direction from pilot balloon data back to the early 1920s, provided by NCAR, have also been used. A statistical regression approach is used for the reconstruction and calibrated in the post-1948 period using NCEP–NCAR reanalysis data. Split-sample validation experiments were performed within the NCEP–NCAR period, and sensitivity experiments with different subsets of predictors were performed. Similar reconstructions and validation experiments were carried out using a 540-yr control run from the Community Climate System Model, version 3 (CCSM3). The reconstructed index series together with validation statistics for both the historical and model data are presented. Excellent reconstruction skill is found for the winter months, while the reconstructions are somewhat worse in summer. Compared with a reconstruction based only on surface data, the addition of the newly digitized upper-air stations improves the reconstruction skill in all seasons. The historical reconstruction is presented with respect to its imprint on hemispheric fields of surface air temperature, sea level pressure, and precipitation with a special focus on extreme cases. In addition, the extended PNA index is compared with indices of the North Atlantic Oscillation, the Pacific decadal oscillation, and the El Niño–Southern Oscillation. The relationship to these indices is found to be stationary over the analysis period.

Corresponding author address: Tracy Ewen, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland. Email: tracy.ewen@env.ethz.ch

Save