• Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103 , 3214132157.

    • Search Google Scholar
    • Export Citation
  • Ardanuy, P. E., D. Han, and V. V. Salomonson, 1991: The Moderate Resolution Imaging Spectrometer (MODIS) science and data system requirements. IEEE Trans. Geosci. Remote Sens., 29 , 7588.

    • Search Google Scholar
    • Export Citation
  • Bales, R. C., J. R. McConnell, E. Mosley-Thompson, and B. Csatho, 2001: Accumulation over the Greenland ice sheet from historical and recent records. J. Geophys. Res., 106 , 3381333825.

    • Search Google Scholar
    • Export Citation
  • Bougamont, M., and J. L. Bamber, 2005: A surface mass balance model for the Greenland ice sheet. J. Geophys. Res., 110 .F04018, doi:10.1029/2005JF000348.

    • Search Google Scholar
    • Export Citation
  • Box, J. E., D. H. Bromwich, and L. S. Bai, 2004: Greenland ice sheet surface mass balance 1991–2000: Application of Polar MM5 mesoscale model and in situ data. J. Geophys. Res., 109 .D16105, doi:10.1029/2003JD004451.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D., R. Cullather, Q-S. Chen, and B. Csatho, 1998: Evaluation of recent precipitation studies for Greenland ice sheet. J. Geophys. Res., 103 , 2600726024.

    • Search Google Scholar
    • Export Citation
  • Cappelen, J., B. Jørgensen, E. V. Laursen, L. Stannius, and R. Thomsen, 2000: The observed climate of Greenland, 1958–99, with climatological standard normals, 1961–99. Danish Meteorological Institute Tech. Rep. 00-18, 151 pp.

  • Cawkwell, F., 2003: The contribution of cloud cover to the radiation budget of the Greenland ice sheet. Ph.D. thesis, University of Bristol, 294 pp.

  • Cawkwell, F., and J. L. Bamber, 2002: The impact of cloud cover on the net radiation budget of the Greenland ice sheet. Ann. Glaciol., 34 , 141149.

    • Search Google Scholar
    • Export Citation
  • Cawkwell, F., J. Bamber, and J-P. Muller, 2001: Determination of cloud top amount and altitude at high latitudes. Geophys. Res. Lett., 28 , 16751678.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1995: Absorption of solar-radiation by clouds—Observations versus models. Science, 267 , 496499.

  • Chen, J. L., C. R. Wilson, and B. D. Tapley, 2006: Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science, 313 , 19581960.

    • Search Google Scholar
    • Export Citation
  • Chen, Q-S., D. Bromwich, and L. Bai, 1997: Precipitation over Greenland retrieved by a dynamic method and its relation to cyclonic activity. J. Climate, 10 , 839870.

    • Search Google Scholar
    • Export Citation
  • Church, J., J. Gregory, P. Huuybrechts, M. Kuhn, C. Lambeck, M. Nhuan, D. Qin, and P. Woodworth, 2001: Changes in sea level. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 639–694.

    • Search Google Scholar
    • Export Citation
  • Cuming, M., and B. Hawkins, 1991: TERDAT: The FNOC system for terrian data extraction and processing. MII Project Tech. Rep. M-254, 2nd ed., Fleet Numerical Oceanography Center, Monterey, CA.

  • Diner, D., and Coauthors, 1999: Multi-angle Imaging SpectroRadiometer (MISR) level 2 cloud detection and classification algorithm theoretical basis. Jet Propulsion Laboratory JPL D-11399, rev. D ed., 110 pp.

  • Ekholm, S., 1996: A full coverage, high-resolution, topographic model of Greenland computed from a variety of digital elevation data. J. Geophys. Res., 101 , 2196121972.

    • Search Google Scholar
    • Export Citation
  • Fettweis, X., H. Gallee, F. Lefebre, and J-P. van Ypersele, 2005: Greenland surface mass balance simulated by a regional climate model and comparison with satellite-derived data in 1990–1991. Climate Dyn., 24 , 623640.

    • Search Google Scholar
    • Export Citation
  • Fowler, C., J. Maslanik, T. Haran, T. Scambos, J. Key, and W. Emery, cited. 2007: AVHRR Polar Pathfinder twice-daily 5 km EASE-Grid composites. National Snow and Ice Data Center, Boulder, CO. [Available online at http://nsidc.org/data/nsidc-0066.html.].

  • Francis, J., and A. Schweiger, cited. 2007: TOVS Pathfinder Path-P daily Arctic gridded atmospheric parameters. National Snow and Ice Data Center, Boulder, CO. [Available online at http://nsidc.org/data/nsidc-0027.html.].

  • Gregory, J. M., P. Huybrechts, and S. C. B. Raper, 2004: Climatology: Threatened loss of the Greenland ice-sheet. Nature, 428 , 616.

  • Greuell, W., and J. Oerlemans, 2004: Assessment of the surface mass balance along the K-transect (Greenland ice sheet) from satellite-derived albedos. Ann. Glaciol., 42 ..

    • Search Google Scholar
    • Export Citation
  • Hahn, C., and S. Warren, 2003: Cloud climatology for land stations worldwide, 1971–1996. Carbon Dioxide Information Center Tech. Rep. NDP-026D, Oak Ridge National Laboratory, Oak Ridge, TN, 35 pp.

  • Hahn, C., S. G. Warren, and J. London, 1995: The effect of moonlight on observation of cloud cover at night, and application to cloud climatology. J. Climate, 8 , 14291446.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., P. Huybrechts, I. Janssens, J. Cappelen, K. Steffen, and A. Stephens, 2005: Runoff and mass balance of the Greenland ice sheet: 1958–2003. J. Geophys. Res., 110 .D13108, doi:10.1029/2004JD005641.

    • Search Google Scholar
    • Export Citation
  • Hutterli, M. A., C. C. Raible, and T. F. Stocker, 2005: Reconstructing climate variability from Greenland ice sheet accumulation: An ERA40 study. Geophys. Res. Lett., 32 .L23712, doi:10.1029/2005GL024745.

    • Search Google Scholar
    • Export Citation
  • Johannessen, O. M., K. Khvorostovsky, M. W. Miles, and L. P. Bobylev, 2005: Recent ice-sheet growth in the interior of Greenland. Science, 310 , 10131016.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Key, J., 2002: The Cloud And Surface Parameter Retrieval (CASPR) system for Polar AVHRR: Users guide. Version 4.0. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, 59 pp. [Available online at http://stratus.ssec.wisc.edu/caspr/documentation.html.].

  • Key, J., X. J. Wang, J. C. Stoeve, and C. Fowler, 2001: Estimating the cloudy-sky albedo of sea ice and snow from space. J. Geophys. Res., 106 , 1248912497.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41 , 442458.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Krabill, W., and Coauthors, 2000: Greenland ice sheet: High-elevation balance and peripheral thinning. Science, 289 , 428430.

  • Krabill, W., and Coauthors, 2004: Greenland ice sheet: Increased coastal thinning. Geophys. Res. Lett., 31 , L24402.

  • Lubin, D., and E. Morrow, 1998: Evaluation of an AVHRR cloud detection and classification method over the central Arctic Ocean. J. Appl. Meteor., 37 , 166183.

    • Search Google Scholar
    • Export Citation
  • Luthcke, S. B., and Coauthors, 2006: Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314 , 12861289.

    • Search Google Scholar
    • Export Citation
  • Meier, W., J. A. Maslanik, J. Key, and C. Fowler, 1997: Multiparameter AVHRR-derived products for Arctic climate studies. Earth Interactions, 1 .[Available online at http://EarthInteractions.org.].

    • Search Google Scholar
    • Export Citation
  • Muller, J-P., A. Mandanayake, C. Moroney, R. Davies, D. Diner, and S. Paradise, 2002: MISR stereoscopic image matchers: Techniques and results. IEEE Trans. Geosci. Remote Sens., 40 , 15471559.

    • Search Google Scholar
    • Export Citation
  • Ramillien, G., A. Lombard, A. Cazenave, E. R. Ivins, M. Llubes, F. Remy, and R. Biancale, 2006: Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE. Global Planet. Change, 53 , 198208.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., and P. Kanagaratnam, 2006: Changes in the velocity structure of the Greenland ice sheet. Science, 311 , 986990.

  • Rossow, W., and R. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612287.

  • Rossow, W., A. Walker, D. Beuschel, and M. Roiter, 1996: International Satellite Cloud Climatology Project (ISCCP) documentation of new cloud datasets. WMO/Tech. Doc. 737, World Meteorological Organization, 115 pp. [Available online at http://isccp.giss.nasa.gov/docs/documents.html.].

  • Schaaf, C. B., and Coauthors, 2002: First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ., 83 , 135148.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A., 1999: Arctic clouds in multiyear satellite data sets. Geophys. Res. Lett., 26 , 18451848.

  • Serreze, M. C., J. R. Key, J. E. Box, J. A. Maslanik, and K. Steffen, 1998: A new monthly climatology of global radiation for the Arctic and comparisons with NCEP–NCAR reanalysis and ISCCP-C2 fields. J. Climate, 11 , 121136.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, and F. Lo, 2005: Northern high-latitude precipitation as depicted by atmospheric reanalyses and satellite retrievals. Mon. Wea. Rev., 133 , 34073430.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., and J. Gibson, 2000: The ERA-40 project plan. ERA-40 Project Rep. Series, No. 1, ECMWF, Reading, United Kingdom, 60 pp.

  • Stroeve, J., A. Nolin, and K. Steffen, 1997: Comparison of AVHRR-derived and in situ surface albedo over the Greenland ice sheet. Remote Sens. Environ., 62 , 262276.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Van de Berg, W., M. Van den Broeke, C. H. Reijmer, and E. van Meijgaard, 2005: Characteristics of the Antarctic surface mass balance, 1958–2002, using a regional atmosphere climate model. Ann. Glaciol., 41 , 97104.

    • Search Google Scholar
    • Export Citation
  • Velicogna, I., and J. Wahr, 2006: Measurements of time-variable gravity show mass loss in Antarctica. Science, 311 , 17541756.

  • Velicogna, I., J. Wahr, E. Hanna, and P. Huybrechts, 2005: Short term mass variability in Greenland, from GRACE. Geophys. Res. Lett., 32 .L05501, doi:10.1029/2004GL021948.

    • Search Google Scholar
    • Export Citation
  • Wang, X. J., and J. Key, 2005: Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder dataset. Part I: Spatial and temporal characteristics. J. Climate, 18 , 25582574.

    • Search Google Scholar
    • Export Citation
  • Weng, W., 1995: Note. Arctic, 48 , 206.

  • Wilks, D., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Zwally, H., M. Giovinetto, J. Li, H. Cornejo, M. Beckley, A. Brenner, J. Saba, and D. Yi, 2005: Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions of sea-level rise: 1992–2002. J. Glaciol., 51 , 509527.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 99 44 0
PDF Downloads 54 23 0

Assessment of Cloud Cover Characteristics in Satellite Datasets and Reanalysis Products for Greenland

View More View Less
  • 1 Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
Restricted access

Abstract

Clouds have an important controlling influence on the radiation balance, and hence surface melting, over the Greenland ice sheet and need to be classified to derive reliable albedo estimates from visible imagery. Little is known, however, about the true cloud cover characteristics for the largest island on Earth, Greenland. Here, an attempt is made to address this knowledge gap by examining cloud characteristics, as determined by three complementary satellites sensors: the Advanced Very High Resolution Radiometer (AVHRR), the Along Track Scanning Radiometer-2 (ATSR-2), and the Moderate Resolution Imaging Spectroradiometer (MODIS). The first provides a multidecadal time series of clouds, albedo, and surface temperature, and is available, in the form of the extended AVHRR Polar Pathfinder dataset (APP-x), as a homogeneous, consistent dataset from 1982 until 2004. APP-x data, however, are also the most challenging to cloud classify over snow-covered terrain, due to the limited spectral capabilities of the instrument. ATSR-2 permits identification and classification using stereophotogrammetric techniques and MODIS has enhanced spectral sampling in the visible and thermal infrared but over more limited time periods. The spatial cloud fractions from the three sensors are compared and show good agreement in terms of both magnitude and spatial pattern. The cloud fractions, and inferred patterns of accumulation, are then assessed from three commonly used reanalysis datasets: NCEP–NCAR, the second NCEP–Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP-II), and the 40-yr ECMWF Re-Analysis (ERA-40). Poor agreement between the reanalysis datasets is found. NCEP–DOE AMIP-II produces a cloud fraction similar to that observed by the satellites. NCEP–NCAR and ERA-40, however, bear little similarity to the cloud fractions derived from the satellite observations. This suggests that they may produce poor accumulation estimates over the ice sheet and poor estimates of radiation balance. Using these reanalysis data to force a mass balance model of the ice sheet, without appropriate downscaling and correction for the substantial biases present, may, therefore, produce substantial errors in surface melt rate estimates.

Corresponding author address: J. A. Griggs, Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, United Kingdom. Email: j.griggs@bristol.ac.uk

Abstract

Clouds have an important controlling influence on the radiation balance, and hence surface melting, over the Greenland ice sheet and need to be classified to derive reliable albedo estimates from visible imagery. Little is known, however, about the true cloud cover characteristics for the largest island on Earth, Greenland. Here, an attempt is made to address this knowledge gap by examining cloud characteristics, as determined by three complementary satellites sensors: the Advanced Very High Resolution Radiometer (AVHRR), the Along Track Scanning Radiometer-2 (ATSR-2), and the Moderate Resolution Imaging Spectroradiometer (MODIS). The first provides a multidecadal time series of clouds, albedo, and surface temperature, and is available, in the form of the extended AVHRR Polar Pathfinder dataset (APP-x), as a homogeneous, consistent dataset from 1982 until 2004. APP-x data, however, are also the most challenging to cloud classify over snow-covered terrain, due to the limited spectral capabilities of the instrument. ATSR-2 permits identification and classification using stereophotogrammetric techniques and MODIS has enhanced spectral sampling in the visible and thermal infrared but over more limited time periods. The spatial cloud fractions from the three sensors are compared and show good agreement in terms of both magnitude and spatial pattern. The cloud fractions, and inferred patterns of accumulation, are then assessed from three commonly used reanalysis datasets: NCEP–NCAR, the second NCEP–Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP-II), and the 40-yr ECMWF Re-Analysis (ERA-40). Poor agreement between the reanalysis datasets is found. NCEP–DOE AMIP-II produces a cloud fraction similar to that observed by the satellites. NCEP–NCAR and ERA-40, however, bear little similarity to the cloud fractions derived from the satellite observations. This suggests that they may produce poor accumulation estimates over the ice sheet and poor estimates of radiation balance. Using these reanalysis data to force a mass balance model of the ice sheet, without appropriate downscaling and correction for the substantial biases present, may, therefore, produce substantial errors in surface melt rate estimates.

Corresponding author address: J. A. Griggs, Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, United Kingdom. Email: j.griggs@bristol.ac.uk

Save