• Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115 , 10831126.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., and C. L. Parkinson, 1987: On the relationship between atmospheric circulation and fluctuations in the sea ice extents of the Bering and Okhotsk seas. J. Geophys. Res., 92 , 71417162.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., C. L. Parkinson, P. Gloerson, and H. J. Zwally, 2006: Sea ice concentrations from Nimbus–7 SMMR and DMSP SSM/I passive microwave data. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/docs/daac/nsidc0051_gsfc_seaice.gd.html.].

  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation. J. Climate, 5 , 354369.

    • Search Google Scholar
    • Export Citation
  • Chaing, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17 , 41434158.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50 , 20382053.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15 , 21632183.

  • Esbensen, S. K., 1984: A comparison of intermonthly and interannual teleconnections in the 700 mb geopotential height field during Northern Hemisphere winter. Mon. Wea. Rev., 112 , 20162032.

    • Search Google Scholar
    • Export Citation
  • Fang, Z., and J. M. Wallace, 1994: Arctic sea ice variability on a timescale of weeks and its relation to atmospheric forcing. J. Climate, 7 , 18971914.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2000: The timescale, power spectra, and climate noise properties of teleconnection patterns. J. Climate, 13 , 44304440.

    • Search Google Scholar
    • Export Citation
  • Fissel, D. B., and C. L. Tang, 1991: Response of sea ice drift to wind forcing on the northeastern Newfoundland shelf. J. Geophys. Res., 96 , 1839718409.

    • Search Google Scholar
    • Export Citation
  • Green, P. M., D. M. Legler, C. J. Miranda V, and J. J. O’Brien, cited. 2007: The North American climate patterns associated with El Niño–Southern Oscillation. COAPS Project Report Series 97–1. [Available online at http://www.coaps.fsu.edu/lib/booklet/.].

  • Guan, B., and S. Nigam, 2008: Pacific sea surface temperatures in the twentieth century: An evolution-centric analysis of variability and trend. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., 1981: A rotated principal component analysis of the interannual variability of the Northern Hemisphere 500 mb height field. Mon. Wea. Rev., 109 , 20802092.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., H. H. Hsu, I. N. James, M. Masutani, P. D. Sardeshmukh, and G. H. White, 1989: Diagnostics of the global atmospheric circulation, based on ECMWF analyses 1979–1989. WCRP-27, WMO Tech. Doc. 326, 217 pp.

  • Hsu, H-H., and J. M. Wallace, 1985: Vertical structure of wintertime teleconnection patterns. J. Atmos. Sci., 42 , 16931710.

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269 , 676679.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2006: Atlantic climate variability and predictability: A CLIVAR perspective. J. Climate, 19 , 51005121.

    • Search Google Scholar
    • Export Citation
  • Johnson, C. M., 1980: Wintertime Arctic sea ice extremes and the simultaneous atmospheric circulation. Mon. Wea. Rev., 108 , 17821791.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., 1970: Large-scale features of monthly mean Northern Hemisphere anomaly maps of sea-level pressure. Mon. Wea. Rev., 98 , 708716.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45 , 27182743.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 1991: Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J. Atmos. Sci., 48 , 25892613.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25 , 693712.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., 1994: On the dynamical basis for the Asian summer monsoon rainfall–El Niño relationship. J. Climate, 7 , 17501771.

  • Nigam, S., 2003: Teleconnections. Encyclopedia of Atmospheric Sciences, J. R. Holton et al., Eds., Academic Press, 2243–2269.

  • Nigam, S., and E. DeWeaver, 2003: Stationary waves (orographically and thermally forced). Encyclopedia of Atmospheric Sciences, J. R. Holton et al., Eds., Academic Press, 2121–2137.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., and A. Ruiz-Barradas, 2006: Seasonal hydroclimate variability over North America in global and regional reanalyses and AMIP simulations: Varied representation. J. Climate, 19 , 815837.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., C. Chung, and E. DeWeaver, 2000: ENSO diabatic heating in ECMWF and NCEP reanalyses, and NCAR CCM3 simulation. J. Climate, 13 , 31523171.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 2005: A new look at the Pacific storm track variability: Sensitivity to tropical SSTs and to upstream seeding. J. Atmos. Sci., 62 , 13671390.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., and A. J. Gratz, 1983: On the seasonal sea ice cover of the Sea of Okhotsk. J. Geophys. Res., 88 , 27932802.

  • Pease, C. H., 1980: Eastern Bering Sea ice processes. Mon. Wea. Rev., 108 , 20152023.

  • Prinsenberg, S. J., I. K. Peterson, S. Narayanan, and J. U. Umoh, 1997: Interaction between atmosphere, ice cover, and ocean off Labrador and Newfoundland from 1962–1992. Can. J. Fish Aquat. Sci., 54 , 3039.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., and J. M. Wallace, 1996: Relationships between North Pacific blocking, El Niño, and the PNA pattern. Mon. Wea. Rev., 124 , 20712076.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1981: The North Pacific Oscillation. J. Climatol., 1 , 3957.

  • Rogers, J. C., 1990: Patterns of low-frequency monthly sea level pressure variability (1899–1986) and associated wave cyclone frequencies. J. Climate, 3 , 13641379.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114 , 23522362.

    • Search Google Scholar
    • Export Citation
  • Schevchenko, G. V., A. B. Rabinovich, and R. E. Thomson, 2004: Sea-ice drift on the northeastern shelf of Sakhalin Island. J. Phys. Oceanogr., 34 , 24702491.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 940 pp.

    • Search Google Scholar
    • Export Citation
  • Thorndike, A. S., and R. Colony, 1982: Sea ice motion in response to geostrophic winds. J. Geophys. Res., 87 , 58455852.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2003a: The seasonal footprinting mechanism in the CSIRO general circulation models. J. Climate, 16 , 26532667.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003b: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16 , 26682675.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., and E. W. Bliss, 1932: World weather V. Mem. Roy. Meteor. Soc., 4 , 5384.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109 , 784812.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1649 979 4
PDF Downloads 2144 1517 3

The North Pacific Oscillation–West Pacific Teleconnection Pattern: Mature-Phase Structure and Winter Impacts

View More View Less
  • 1 Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
Restricted access

Abstract

The North Pacific Oscillation (NPO) in sea level pressure and its upper-air geopotential height signature, the west Pacific (WP) teleconnection pattern, constitute a prominent mode of winter midlatitude variability, the NPO/WP. Its mature-phase expression is identified from principal component analysis of monthly sea level pressure variability as the second leading mode just behind the Pacific–North American variability pattern.

NPO/WP variability, primarily on subseasonal time scales, is characterized by a large-scale meridional dipole in SLP and geopotential height over the Pacific and is linked to meridional movements of the Asian–Pacific jet and Pacific storm track modulation. The hemispheric height anomalies at upper levels resemble the climatological stationary wave pattern attributed to transient eddy forcing. The NPO/WP divergent circulation is thermal wind restoring, pointing to independent forcing of jet fluctuations.

Intercomparison of sea level pressure, geopotential height, and zonal wind anomaly structure reveals that NPO/WP is a basin analog of the NAO, which is not surprising given strong links to storm track variability in both cases.

The NPO/WP variability is influential: its impact on Alaskan, Pacific Northwest, Canadian, and U.S. winter surface air temperatures is substantial—more than that of PNA or ENSO. It is likewise more influential on the Pacific Northwest, western Mexico, and south-central Great Plains winter precipitation.

Finally, and perhaps, most importantly, NPO/WP is strongly linked to marginal ice zone variability of the Arctic seas with an influence that surpasses that of other Pacific modes. Although NPO/WP variability and impacts have not been as extensively analyzed as its Pacific cousins (PNA, ENSO), it is shown to be more consequential for Arctic sea ice and North American winter hydroclimate.

Corresponding author address: Sumant Nigam, 3419 Computer and Space Science Bldg., University of Maryland, College Park, College Park, MD 20742-2425. Email: nigam@atmos.umd.edu

Abstract

The North Pacific Oscillation (NPO) in sea level pressure and its upper-air geopotential height signature, the west Pacific (WP) teleconnection pattern, constitute a prominent mode of winter midlatitude variability, the NPO/WP. Its mature-phase expression is identified from principal component analysis of monthly sea level pressure variability as the second leading mode just behind the Pacific–North American variability pattern.

NPO/WP variability, primarily on subseasonal time scales, is characterized by a large-scale meridional dipole in SLP and geopotential height over the Pacific and is linked to meridional movements of the Asian–Pacific jet and Pacific storm track modulation. The hemispheric height anomalies at upper levels resemble the climatological stationary wave pattern attributed to transient eddy forcing. The NPO/WP divergent circulation is thermal wind restoring, pointing to independent forcing of jet fluctuations.

Intercomparison of sea level pressure, geopotential height, and zonal wind anomaly structure reveals that NPO/WP is a basin analog of the NAO, which is not surprising given strong links to storm track variability in both cases.

The NPO/WP variability is influential: its impact on Alaskan, Pacific Northwest, Canadian, and U.S. winter surface air temperatures is substantial—more than that of PNA or ENSO. It is likewise more influential on the Pacific Northwest, western Mexico, and south-central Great Plains winter precipitation.

Finally, and perhaps, most importantly, NPO/WP is strongly linked to marginal ice zone variability of the Arctic seas with an influence that surpasses that of other Pacific modes. Although NPO/WP variability and impacts have not been as extensively analyzed as its Pacific cousins (PNA, ENSO), it is shown to be more consequential for Arctic sea ice and North American winter hydroclimate.

Corresponding author address: Sumant Nigam, 3419 Computer and Space Science Bldg., University of Maryland, College Park, College Park, MD 20742-2425. Email: nigam@atmos.umd.edu

Save