• Ackerman, A. S., , M. Kirkpatrick, , D. Stevens, , and O. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432 , 10141017. doi:10.1038/nature03174.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1973: Non-precipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99 , 178196.

  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112 , 677691.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX, and arctic-airmass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Boers, R., , and R. Mitchell, 1994: Absorption feedback in stratocumulus clouds. Influence on cloud-top albedo. Tellus, 46A , 229241.

  • Bony, S., , and J-L. Dufresne, 2005: Marine boundary layer clouds at the heart of cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32 .L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , and M. C. Wyant, 1997: Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54 , 148167.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , T. Uttal, , C. W. Fairall, , S. E. Yuter, , R. A. Weller, , D. Baumgardner, , K. Comstock, , and R. Wood, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85 , 967977.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , P. Blossey, , and J. Uchida, 2007: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett., 34 .L03813, doi:10.1029/2006GL027648.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P. M., , C. S. Bretherton, , and R. Wood, 2005: Mixed-layer budget analysis of the diurnal cycle of entrainment in southeast Pacific stratocumulus. J. Atmos. Sci., 62 , 37753791.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1989: Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245 , 513516.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20 , 607609.

  • Clement, A., , and R. Seager, 1999: Climate and the tropical oceans. J. Climate, 12 , 33833401.

  • Comstock, K., , R. Wood, , S. E. Yuter, , and C. S. Bretherton, 2004: Reflectivity and rain rate in and below drizzling stratocumulus. Quart. J. Roy. Meteor. Soc., 130 , 28912918.

    • Search Google Scholar
    • Export Citation
  • Gregory, J., , and M. Webb, 2008: Tropospheric adjustment induces a cloud component in CO2 forcing. J. Climate, 21 , 5871.

  • Hansen, J., , A. Lacis, , D. Rind, , G. Russell, , P. Stone, , I. Fung, , R. Ruedy, , and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 130–163.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19 , 56865699.

  • Houghton, J., , Y. Ding, , D. Griggs, , M. Noguer, , P. van der Linden, , X. Dai, , and K. Maskell, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 892 pp.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , C. A. Shields, , J. J. Hack, , and W. D. Collins, 2006: The climate sensitivity of the Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 25842596.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15871606.

  • Knutson, T., , and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8 , 21812199.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., , C. Fairall, , P. Zuidema, , J. Tomlinson, , and G. Wick, 2004: Observations of marine stratocumulus in SE Pacific during the PACS 2003 cruise. Geophys. Res. Lett., 31 .L22110, doi:10.1029/2004GL020751.

    • Search Google Scholar
    • Export Citation
  • Larson, K., , D. Hartmann, , and S. Klein, 1999: The role of clouds, water vapor, circulation, and boundary layer structure in the sensitivity of the tropical climate. J. Climate, 12 , 23592374.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D., , and W. Lewellen, 1998: Large-eddy boundary layer entrainment. J. Atmos. Sci., 55 , 26452665.

  • Lilly, D., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94 , 292309.

  • McClatchey, R., , R. Fenn, , J. Selby, , F. Volz, , and J. Garing, 1971: Optical properties of the atmosphere. Tech. Rep. AFCRL-71–0497, Air Force Cambridge Research Laboratory, Hanscom Air Force Base, Bedford, MA, 108 pp.

  • Medeiros, B., , B. Stevens, , I. M. Held, , M. Zhao, , D. L. Williamson, , J. G. Olson, , and C. S. Bretherton, 2008: Aquaplanets, climate sensitivity, and low clouds. J. Climate, 21 , 49744991.

    • Search Google Scholar
    • Export Citation
  • Miller, R., 1997: Tropical thermostats and low cloud cover. J. Climate, 10 , 409440.

  • Payne, R., 1972: Albedo of the sea surface. J. Atmos. Sci., 29 , 959970.

  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the runaway greenhouse. J. Atmos. Sci., 52 , 17841806.

  • Pincus, R., , and M. B. Baker, 1994: Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature, 372 , 250252.

    • Search Google Scholar
    • Export Citation
  • Randall, D., , J. Coakley Jr., , D. Lenschow, , C. Fairall, , and R. Kropfli, 1984: Outlook for research on subtropical marine stratification clouds. Bull. Amer. Meteor. Soc., 65 , 12901301.

    • Search Google Scholar
    • Export Citation
  • Siems, S., , D. Lenschow, , and C. S. Bretherton, 1993: A numerical study of the interaction between stratocumulus and the air overlying it. J. Atmos. Sci., 50 , 36633676.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , J. Nilsson, , and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58 , 36503665.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., , R. T. Wetherald, , G. L. Stenchikov, , and A. Robock, 2002: Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapour. Science, 296 , 727730.

    • Search Google Scholar
    • Export Citation
  • Somerville, R. C. J., , and L. A. Remer, 1984: Cloud optical thickness feedbacks in the CO2 climate problem. J. Geophys. Res., 89 , 96689672.

    • Search Google Scholar
    • Export Citation
  • Stephens, G., , P. Partain, , and P. Gabriel, 2001: Parameterization of atmospheric radiative transfer. Part I: Validity of simple models. J. Atmos. Sci., 58 , 33913409.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2000: Cloud transitions and decoupling in shear-free stratocumulus-topped boundary layers. Geophys. Res. Lett., 27 , 25572560.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2002: Entrainment in stratocumulus-topped mixed layers. Quart. J. Roy. Meteor. Soc., 128 , 26632689.

  • Stevens, B., , A. Beljaars, , S. Bordoni, , C. Holloway, , M. Köhler, , S. Krueger, , V. Savic-Jovcic, , and Y. Zhang, 2007: On the structure of the lower troposphere in the summertime stratocumulus regime of the northeast Pacific. Mon. Wea. Rev., 135 , 9851005.

    • Search Google Scholar
    • Export Citation
  • Turton, J., , and S. Nicholls, 1987: A study of the diurnal variation of stratocumulus using a multiple mixed layer model. Quart. J. Roy. Meteor. Soc., 113 , 9691009.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Vecchi, G., , B. Soden, , A. Wittenberg, , I. Held, , A. Leetmaa, , and M. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 44 , 7376.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and Coauthors, 2006: Evaluation of a component of the cloud response to climate change in an intercomparison of climate models. Climate Dyn., 26 , 145165. doi:10.1007/s00382-005-0067-7.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratocumulus clouds. Part I: Aircraft observations. J. Atmos. Sci., 62 , 30113033.

  • Wood, R., 2007: Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning. J. Atmos. Sci., 64 , 26572669.

    • Search Google Scholar
    • Export Citation
  • Wood, R., , and C. S. Bretherton, 2004: Boundary layer depth, entrainment, and decoupling in the cloud-capped subtropical and tropical marine boundary layer. J. Climate, 17 , 35763588.

    • Search Google Scholar
    • Export Citation
  • Wood, R., , and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower tropospheric stability. J. Climate, 19 , 64256432.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., , C. S. Bretherton, , J. T. Bacmeister, , J. T. Kiehl, , I. M. Held, , M. Zhao, , S. A. Klein, , and B. A. Soden, 2006: A comparison of tropical cloud properties and responses in GCMs using mid-tropospheric vertical velocity. Climate Dyn., 27 , 261279.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., and Coauthors, 2007: A single-column model intercomparison of a heavily drizzling stratocumulus-topped boundary layer. J. Geophys. Res., 112 .D24204, doi:10.1029/2007JD008536.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., , and H. Soon, 2006: Deceleration of the atmospheric Walker circulation in the last fifty years. Geophys. Res. Lett., 33 .L12701, doi:10.1029/2006GL025942.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., and Coauthors, 2005: Intercomparison and interpretation of single-column model simulations of a nocturnal stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 133 , 27412758.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 24 24 3
PDF Downloads 19 19 4

Response of a Subtropical Stratocumulus-Capped Mixed Layer to Climate and Aerosol Changes

View More View Less
  • 1 University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

In this paper, an idealized framework based on a cloud-topped mixed layer model is developed for investigating feedbacks between subtropical stratocumulus (Sc) and global warming. The two principal control parameters are Sc-region sea surface temperature (SST) and intertropical convergence zone (ITCZ) SST (which controls the temperature and mean subsidence profiles above the Sc). The direct effect of CO2 doubling (leaving all other parameters fixed) is tested and found to somewhat reduce liquid water path; discussion of this effect on the SST-change simulations is included. The presence of a cold boundary layer is found to significantly affect the temperature and subsidence rate just above cloud top by enhancing lower-tropospheric diabatic cooling in this region. A simple representation of this effect (easily generalizable to a more realistic boundary layer model) is developed.

Steady-state solutions are analyzed as a function of local and ITCZ SST. Two climate change scenarios are considered. The first scenario is an equal increase of local and ITCZ SSTs. In this case, predicted boundary layer depth and cloud thickness increase. This is found in a simplified context to result from subsidence and entrainment decreases due to increased static stability in a warmer climate. In the second case, local SST change is diagnosed from a surface energy balance under the assumption that ocean heat transport remains unchanged. In this case, predicted boundary layer depth decreases. Cloud continues to thicken with rising ITCZ SST, but at a rate much reduced in comparison to the equal-warming scenario. This cloud shading feedback keeps SST in the Sc region nearly constant as the ITCZ SST increases.

Model sensitivity to aerosol indirect effects is also considered by varying the assumed droplet concentration. The resulting change in liquid water path is small, suggesting a weaker dependence on second indirect effect than found in previous studies.

* Current affiliation: Lawrence Livermore National Laboratory, Livermore, California

Corresponding author address: Peter Caldwell, L-103, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94566. Email: caldwell19@llnl.gov

Abstract

In this paper, an idealized framework based on a cloud-topped mixed layer model is developed for investigating feedbacks between subtropical stratocumulus (Sc) and global warming. The two principal control parameters are Sc-region sea surface temperature (SST) and intertropical convergence zone (ITCZ) SST (which controls the temperature and mean subsidence profiles above the Sc). The direct effect of CO2 doubling (leaving all other parameters fixed) is tested and found to somewhat reduce liquid water path; discussion of this effect on the SST-change simulations is included. The presence of a cold boundary layer is found to significantly affect the temperature and subsidence rate just above cloud top by enhancing lower-tropospheric diabatic cooling in this region. A simple representation of this effect (easily generalizable to a more realistic boundary layer model) is developed.

Steady-state solutions are analyzed as a function of local and ITCZ SST. Two climate change scenarios are considered. The first scenario is an equal increase of local and ITCZ SSTs. In this case, predicted boundary layer depth and cloud thickness increase. This is found in a simplified context to result from subsidence and entrainment decreases due to increased static stability in a warmer climate. In the second case, local SST change is diagnosed from a surface energy balance under the assumption that ocean heat transport remains unchanged. In this case, predicted boundary layer depth decreases. Cloud continues to thicken with rising ITCZ SST, but at a rate much reduced in comparison to the equal-warming scenario. This cloud shading feedback keeps SST in the Sc region nearly constant as the ITCZ SST increases.

Model sensitivity to aerosol indirect effects is also considered by varying the assumed droplet concentration. The resulting change in liquid water path is small, suggesting a weaker dependence on second indirect effect than found in previous studies.

* Current affiliation: Lawrence Livermore National Laboratory, Livermore, California

Corresponding author address: Peter Caldwell, L-103, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94566. Email: caldwell19@llnl.gov

Save