• Adam, J. C., , E. A. Clark, , D. P. Lettenmaier, , and E. F. Woods, 2006: Correction of global precipitation products for orographic effects. J. Climate, 19 , 1538.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Alt, B. T., 1987: Developing synoptic analogs for extreme mass balance conditions on Queen Elizabeth Island ice caps. J. Climate Appl. Meteor., 26 , 16051623.

    • Search Google Scholar
    • Export Citation
  • Anderson, E. A., 1976: A point energy and mass balance model of a snow cover. NOAA Tech. Rep. NWS 19, Office of Hydrology, National Weather Service, Silver Spring, MD, 150 pp.

  • Andrews, J. T., , and R. G. Barry, 1978: Glacial inception and disintegration during the last glaciation. Annu. Rev. Earth Planet. Sci., 6 , 205228.

    • Search Google Scholar
    • Export Citation
  • Barry, R. G., 1966: Meteorological aspects of the glacial history of Labrador-Ungava with special reference to atmospheric vapour transport. Geogr. Bull., 8 , 319340.

    • Search Google Scholar
    • Export Citation
  • Barry, R. G., , J. T. Andrews, , and M. A. Mahaffy, 1975: Continental ice sheets: Conditions for growth. Science, 190 , 979981.

  • Berg, A., , and J. S. Famiglietti, 2003: Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes. J. Geophys. Res., 108 .4490, doi:10.1029/2002JD003334.

    • Search Google Scholar
    • Export Citation
  • Berger, A., 1978: Long term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci., 35 , 23622367.

  • Bianca, F., , A. P. Wolfe, , G. H. Miller, , H. Gifford, , R. J. H. Pierre, , and A. de Vernal, 2006: Vegetation and climate of the last interglacial on Baffin Island, Arctic Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol., 236 , 91106.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1996: A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide. NCAR Tech. Note NCAR/TN-417+STR, 150 pp.

  • Bonan, G. B., , and S. Levis, 2006: Evaluating aspects of the Community Land and Atmosphere Models (CLM3 and CAM3) using a dynamic global vegetation model. J. Climate, 19 , 23022324.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., , K. W. Oleson, , M. Vertenstein, , S. Levis, , X. Zeng, , Y. Dai, , R. E. Dickinson, , and Z. Yang, 2002: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Climate, 15 , 31233149.

    • Search Google Scholar
    • Export Citation
  • Box, J., , J. Key, , J. Maslanik, , and M. C. Serreze, 1998: Arctic Global Radiation (AGR) data set. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/arcss066.html.].

  • Broecker, W. S., , and J. van Donk, 1970: Insolation changes, ice volume, and the O18 record in deep-sea cores. Rev. Geophys. Space Phys., 8 , 169198.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., , D. L. Thurber, , J. Goddard, , T. Ku, , R. K. Matthews, , and K. J. Mesolella, 1968: Milankovitch hypothesis supported by precise dating of coral reef and deep-sea sediments. Science, 159 , 297300.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , and S-H. Wang, 2005: Evaluation of the NCEP/NCAR and ECMWF 15/40-yr reanalyses using rawinsonde data from two independent Arctic field experiments. Mon. Wea. Rev., 133 , 35623578.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , E. R. Toracinta, , and S-H. Wang, 2002: Meteorological perspective on the initiation of the Laurentide Ice Sheet. Quat. Int., 95–96 , 113124.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , R. L. Fogt, , K. E. Hodges, , and J. E. Walsh, 2007: A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J. Geophys. Res., 112 .D10111, doi:10.1029/2006JD007859.

    • Search Google Scholar
    • Export Citation
  • Chen, M., , P. Xie, , J. E. Janowiak, , and P. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3 , 249266.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Crucifix, M., , M. F. Loutre, , and A. Berger, 2006: The climate response to astronomical forcing. Space Sci. Rev., 125 , 213226.

  • Cullather, R. I., , D. H. Bromwich, , and M. C. Serreze, 2000: The atmospheric hydrologic cycle over the Arctic basin from reanalyses. Part I: Comparison with observations and previous studies. J. Climate, 13 , 923937.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., , and Q-C. Zeng, 1997: A land surface model (IAP94) for climate studies, Part I: Formulation and validation in off-line experiments. Adv. Atmos. Sci., 14 , 433460.

    • Search Google Scholar
    • Export Citation
  • De Noblet, N. I., , I. C. Prentice, , S. Joussaume, , D. Texier, , A. Botta, , and A. Haxeltine, 1996: Possible role of atmosphere–biosphere interactions in triggering the last glaciation. Geophys. Res. Lett., 23 , 31913194.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., , A. Henderson-Sellers, , P. J. Kennedy, , and M. F. Wilson, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) version 1e coupled to Community Climate Model. NCAR Tech. Note NCAR/TN-387+STR, 72 pp.

  • Dickinson, R. E., , K. W. Oleson, , G. Bonan, , F. Hoffman, , P. Thornton, , M. Vertenstein, , Z-L. Yang, , and X. Zeng, 2006: The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate, 19 , 23252346.

    • Search Google Scholar
    • Export Citation
  • Dong, B., , and P. J. Valdes, 1995: Sensitivity studies of Northern Hemisphere glaciation using an atmospheric general circulation model. J. Climate, 8 , 24712496.

    • Search Google Scholar
    • Export Citation
  • Gardner, A. S., , and M. Sharp, 2007: Influence of the Arctic circumpolar vortex on the mass balance of Canadian high Arctic glaciers. J. Climate, 20 , 45864598.

    • Search Google Scholar
    • Export Citation
  • Gebhardt, C., , N. Kühl, , A. Hensel, , and T. Litt, 2007: Reconstruction of quaternary temperature fields by dynamically consistent smoothing. Climate Dyn., 30 , 421437. doi:10.1007/s00382-007-0299-9.

    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., , P. Kallberg, , A. Hernandez, , S. Upalla, , A. Nomura, , and S. Serrano, 1997: ERA description. Vol. 1, European Centre for Medium-Range Weather Forecasts, 72 pp.

  • Goodison, B. E., , P. Y. T. Louie, , and D. Yang, 1998: WMO solid precipitation measurement intercomparison. World Meteorological Organization Tech. Doc. WMO/TD 872, 212 pp.

  • Hall, A., , A. Clement, , D. W. J. Thompson, , A. Broccoli, , and C. Jackson, 2005: The importance of atmospheric dynamics in the Northern Hemisphere winter climate response to changes in the earth’s orbit. J. Climate, 18 , 13151325.

    • Search Google Scholar
    • Export Citation
  • Hays, J. D., , J. Imbrie, , and N. J. Shackleton, 1976: Variations in the earth’s orbit: Pacemaker of the Ice Ages. Science, 194 , 11211132.

    • Search Google Scholar
    • Export Citation
  • Huybers, P., , and P. Molnar, 2007: Tropical cooling and the onset of North American glaciation. Climate Past Discuss., 3 , 771789.

  • Ives, J. D., 1957: Glaciation of the Torngat Mountains, northern Labrador. Arctic, 10 , 6787.

  • Jacobs, J. D., , R. G. Barry, , R. S. Bradley, , and R. L. Weaver, 1974: Studies of climate and ice conditions in eastern Baffin Island, 1971–1973. Occasional Paper 9, University of Colorado, Institute of Arctic and Alpine Research, Boulder, CO, 78 pp.

  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM.89. U.S. Army Cold Regions Research and Engineering Laboratory, Special Rep. 91-16, 49 pp.

  • Joussaume, S., , and P. Braconnot, 1997: Sensitivity of paleoclimate simulation results to season definitions. J. Geophys. Res., 102 , 19431956.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Khodri, M., , Y. Leclainche, , G. Ramstein, , P. Braconnot, , O. Marti, , and E. Cortijo, 2001: Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature, 410 , 570574. doi:10.1038/35069044.

    • Search Google Scholar
    • Export Citation
  • Khodri, M., , M. A. Cane, , G. Kukla, , J. Gavin, , and P. Braconnot, 2005: The impact of precession changes on the Arctic climate during the last interglacial–glacial transition. Earth Planet. Sci. Lett., 236 , 285304.

    • Search Google Scholar
    • Export Citation
  • Kubatzki, C., , M. Claussen, , R. Calov, , and A. Ganopolski, 2006: Sensitivity of the last glacial inception to initial and surface conditions. Climate Dyn., 27 , 333344.

    • Search Google Scholar
    • Export Citation
  • Kühl, N., , and T. Litt, 2003: Quantitative time series reconstruction of Eemian temperature at three European sites using pollen data. Veg. Hist. Archaeobot., 12 , 205214.

    • Search Google Scholar
    • Export Citation
  • Kukla, G. J., , and A. Kocí, 1972: End of the last interglacial in the loess record. Quat. Res., 2 , 374383.

  • Kutzbach, J. E., , and B. L. Otto-Bliesner, 1982: The sensitivity of the African–Asian monsoon climate orbital parameter changes for 900 years B.P. in a low-resolution general circulation model. J. Atmos. Sci., 39 , 11771188.

    • Search Google Scholar
    • Export Citation
  • Landais, A., and Coauthors, 2006: The glacial inception as recorded in the NorthGRIP Greenland ice core: Timing, structure and associated abrupt temperature changes. Climate Dyn., 26 , 273284.

    • Search Google Scholar
    • Export Citation
  • Laskar, J., , F. Joutel, , and F. Boudin, 1993: Orbital precessional and insolation quantities for the earth from −20 Myr to +10 Myr. Astron. Astrophys., 270 , 522533.

    • Search Google Scholar
    • Export Citation
  • Levis, S., , G. B. Bonan, , M. Vertenstein, , and K. W. Oleson, 2004: The Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM): Technical description and user’s guide. NCAR Tech. Note NCAR/TN-459+IA, 50 pp.

  • Loewe, F., 1971: Considerations on the origin of the quaternary ice sheet of North America. Arct. Alp. Res., 3 , 331344.

  • Matsuura, K., , and C. J. Willmott, 2005: Arctic land-surface precipitation: 1930–2004 gridded monthly time series (version 1.03). Digital media. [Available online at http://climate.geog.udel.edu/~climate/html_pages/download.html#ac_precip_ts4.].

  • Meisner, K. J., , A. J. Weaver, , H. D. Matthews, , and P. M. Cox, 2003: The role of land surface dynamics in glacial inception: A study with the UVic Earth System Model. Climate Dyn., 21 , 515537.

    • Search Google Scholar
    • Export Citation
  • Milankovitch, M., 1941: Canon of Insolation and the Ice Age Problem. Translation 1969, Jerusalem, Israel Program for Scientific Translations, 484 pp. [Available from U.S. Dept. of Commerce, Clearinghouse for Federal Scientific and Technical Information, Springfield, VA 22161.].

    • Search Google Scholar
    • Export Citation
  • Muller, R. A., , and G. J. MacDonald, 1997: Glacial cycles and astronomical forcing. Science, 277 , 215218.

  • Oleson, K., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 164 pp.

  • Qian, T., , A. Dai, , K. Trenberth, , and K. W. Oleson, 2006: Simulations of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations. J. Hydrometeor., 7 , 953975.

    • Search Google Scholar
    • Export Citation
  • Ramstein, G., , M. Khodri, , Y. Donnadieu, , F. Fluteau, , and Y. Goddéris, 2005: Impact of the hydrological cycle on past climate changes: Three illustrations at different time scales. C. R. Geosci., 337 , 125137.

    • Search Google Scholar
    • Export Citation
  • Reichert, B. K., , L. M. Bengtsson, , and J. Oerlemans, 2001: Midlatitude forcing for glacier mass balance investigated using general circulation models. J. Climate, 14 , 37673784.

    • Search Google Scholar
    • Export Citation
  • Rind, D., , D. Peteet, , and G. Kukla, 1989: Can Milankovitch orbital variations initiate the growth of ice sheets in a general circulation model? J. Geophys. Res., 94 , 1285112871.

    • Search Google Scholar
    • Export Citation
  • Rogers, A. N., , D. H. Bromwich, , E. N. Sinclair, , and R. I. Cullather, 2001: The atmospheric hydrologic cycle over the Arctic basin from reanalyses. Part II: Interannual variability. J. Climate, 14 , 24142429.

    • Search Google Scholar
    • Export Citation
  • Ruddiman, W. F., 2006: Orbital changes and climate. Quat. Sci. Rev., 25 , 30923112.

  • Serreze, M. C., , and J. A. Maslanik, 1997: Arctic precipitation as represented in the NCEP/NCAR reanalysis. Ann. Glaciol., 25 , 429433.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , and C. M. Hurst, 2000: Representation of mean Arctic precipitation from NCEP–NCAR and ERA reanalyses. J. Climate, 13 , 182201.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , J. R. Key, , J. E. Box, , J. A. Maslanik, , and K. Steffen, 1998: A new monthly climatology of global radiation for the Arctic and comparisons with NCEP–NCAR reanalysis and ISCCP-C2 fields. J. Climate, 11 , 121136.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , M. P. Clark, , and D. H. Bromwich, 2003: Monitoring precipitation over the Arctic terrestrial drainage system: Data requirements, shortcomings, and applications of atmospheric reanalysis. J. Hydrometeor., 4 , 387407.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , A. P. Barrett, , and F. Lo, 2005: Northern high-latitude precipitation as depicted by atmospheric reanalyses and satellite retrievals. Mon. Wea. Rev., 133 , 34073430.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , A. D. Ziegler, , E. F. Wood, , and Y. Chen, 2004: Correction of the high-latitude rain day anomaly in the NCEP–NCAR reanalysis for land surface hydrological modeling. J. Climate, 17 , 38143828.

    • Search Google Scholar
    • Export Citation
  • Skinner, L. C., 2006: Glacial–interglacial atmospheric CO2 change: A simple hypsometric effect on deep-ocean carbon sequestration. Climate Past Discuss, 2 , 711743.

    • Search Google Scholar
    • Export Citation
  • Sloss, P. W., 2001: ETOPO2: 2 minute worldwide bathymetry/topography data. National Geophysical Data Center (NGDC) ETOPO2 global 2′ elevations, CD-ROM. [Available from NOAA/NGDC Mail Code E/GC3, 325 Broadway, Boulder, CO 80305.].

  • Soon, W., 2007: Implications of the secondary role of carbon dioxide and methane forcing in climate change: Past, present, and future. Phys. Geogr., 28 , 193275.

    • Search Google Scholar
    • Export Citation
  • Stott, L., , A. Timmermann, , and R. Thunell, 2007: Southern Hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming. Science, 318 , 435438.

    • Search Google Scholar
    • Export Citation
  • Tamisiea, M. E., , J. X. Mitrovica, , and J. L. Davis, 2007: GRACE gravity data constrain ancient ice geometries and continental dynamics over Laurentia. Science, 316 , 881883.

    • Search Google Scholar
    • Export Citation
  • Tian, X., , A. Dai, , D. Yang, , and Z. Xie, 2007: Effects of precipitation-bias corrections on the surface hydrology over northern latitudes. J. Geophys. Res., 112 .D14101, doi:10.1029/2007JD008420.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012. doi:10.1256/qj.04.176.

  • Vertenstein, M., , F. Hoffman, , K. Oleson, , and S. Levis, 2004: Community Land Model Version 3.0 (CLM3.0) user’s guide. 39 pp. [Available online at http://www.cgd.ucar.edu/tss/clm/distribution/clm3.0/UsersGuide/UsersGuide.pdf.].

  • Vettoretti, G., , and W. R. Peltier, 2003: Post-Eemian glacial inception. Part II: Elements of a cryospheric moisture pump. J. Climate, 16 , 912927.

    • Search Google Scholar
    • Export Citation
  • Vettoretti, G., , and W. R. Peltier, 2004: Sensitivity of glacial inception to orbital and greenhouse gas climate forcing. Quat. Sci. Rev., 23 , 499519.

    • Search Google Scholar
    • Export Citation
  • Willet, H. C., , and F. Sanders, 1959: Descriptive Meteorology. 2nd ed. Academic Press, 355 pp.

  • Williams, L. D., 1979: An energy balance model of potential glacierization of Northern Canada. Arct. Alp. Res., 11 , 443456.

  • Willmott, C. J., , and M. A. Rawlins, 1999: Arctic land-surface air temperature: Gridded monthly and annual climatologies (version 1.01). [Available online at http://climate.geog.udel.edu/~climate/html_pages/ac_readme/README.temp.clim.html.].

  • Yang, D., , D. Kane, , and Z. Zhang, 2005: Bias correction of long-term (1973–2004) daily precipitation data over northern regions. Geophys. Res. Lett., 32 .L19501, doi:10.1029/2005Gl024057.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., , M. C. Reader, , A. J. Weaver, , and N. A. McFarlane, 2002: On the causes of glacial inception at 116 ka BP. Climate Dyn., 18 , 383402.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., , M. Shaikh, , Y. Dai, , R. E. Dickinson, , and R. Mynenic, 2002: Coupling of the Common Land Model to the NCAR Community Climate Model. J. Climate, 15 , 18321854.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., , K. Stamnes, , and S. A. Bowling, 1996: Impact of clouds on surface radiative fluxes and snowmelt in the Arctic and subarctic. J. Climate, 9 , 21102123.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., , S. A. Bowling, , and K. Stamnes, 1997: Impact of the atmosphere on surface radiative fluxes and snowmelt in the Arctic and subarctic. J. Geophys. Res., 102 , 42874302.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., , K. Stamnes, , and S. A. Bowling, 2001: Impact of the atmospheric thickness on the atmospheric downwelling longwave radiation and snowmelt under clear-sky conditions in the Arctic and subarctic. J. Climate, 14 , 920939.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 33 33 7
PDF Downloads 16 16 3

Contribution of Atmospheric Circulation to Inception of the Laurentide Ice Sheet at 116 kyr BP

View More View Less
  • 1 Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio
  • | 2 Polar Meteorology Group, Byrd Polar Research Center, and Atmospheric Sciences Program, Department of Geography, The Ohio State University, Columbus, Ohio
© Get Permissions
Restricted access

Abstract

The role of atmospheric circulations, yielding extremely cold summer and wet winter seasons, in the development of perennial snow cover over the inception region of the Laurentide Ice Sheet is investigated using the Community Land Model, version 3 (CLM3) with bias-corrected 40-yr ECMWF Re-Analysis (ERA-40) idealized atmospheric forcing. Potential contribution of changes in frequency of these extremes under contemporary and Eemian (116 kyr BP) conditions is also examined by adjusting the atmospheric forcing.

The results confirm that colder atmospheric temperatures during the melt season are more important than extreme amounts of winter snowfall. Increases in frequency of extremely cold and persistent summer air temperatures in the contemporary climate do not produce perennial snow. An additional cooling of 4°C together with adjustments for Eemian incident radiation is required for perennial snow to start growing around Hudson Bay. Deeper snow is found over the Labrador–Ungava area, close to the North Atlantic Ocean moisture sources, compared to the Keewatin area. These areas are in agreement with the locations of the Laurentide Ice Sheet domes found from free gravity analysis.

Starting from the warm present-day atmosphere a 25% decrease in summer insolation is required for CLM3 to develop perennial snow. This suggests that cooling resulting from modest decreases in local insolation in response to Milankovitch radiation forcing was insufficient for inception at 116 kyr BP. Remote cooling or local feedbacks that amplify the impact of the modest insolation reductions are required. A large-scale atmospheric cooling appears to have played a decisive role in inception.

Corresponding author address: Francis Ochieng Otieno, Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, 1090 Carmack Road, Columbus, OH 43210. Email: otieno.1@osu.edu

Abstract

The role of atmospheric circulations, yielding extremely cold summer and wet winter seasons, in the development of perennial snow cover over the inception region of the Laurentide Ice Sheet is investigated using the Community Land Model, version 3 (CLM3) with bias-corrected 40-yr ECMWF Re-Analysis (ERA-40) idealized atmospheric forcing. Potential contribution of changes in frequency of these extremes under contemporary and Eemian (116 kyr BP) conditions is also examined by adjusting the atmospheric forcing.

The results confirm that colder atmospheric temperatures during the melt season are more important than extreme amounts of winter snowfall. Increases in frequency of extremely cold and persistent summer air temperatures in the contemporary climate do not produce perennial snow. An additional cooling of 4°C together with adjustments for Eemian incident radiation is required for perennial snow to start growing around Hudson Bay. Deeper snow is found over the Labrador–Ungava area, close to the North Atlantic Ocean moisture sources, compared to the Keewatin area. These areas are in agreement with the locations of the Laurentide Ice Sheet domes found from free gravity analysis.

Starting from the warm present-day atmosphere a 25% decrease in summer insolation is required for CLM3 to develop perennial snow. This suggests that cooling resulting from modest decreases in local insolation in response to Milankovitch radiation forcing was insufficient for inception at 116 kyr BP. Remote cooling or local feedbacks that amplify the impact of the modest insolation reductions are required. A large-scale atmospheric cooling appears to have played a decisive role in inception.

Corresponding author address: Francis Ochieng Otieno, Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University, 1090 Carmack Road, Columbus, OH 43210. Email: otieno.1@osu.edu

Save