• Achatz, U., , and J. D. Opsteegh, 2003: Primitive-equation-based low-order models with seasonal cycle. Part II: Application to complexity and nonlinearity of large-scale atmosphere dynamics. J. Atmos. Sci., 60 , 478490.

    • Search Google Scholar
    • Export Citation
  • Berger, A. L., 1978: Long-term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci., 35 , 23622367.

  • Bettge, T. W., , J. W. Weatherly, , W. M. Washington, , D. Pollard, , B. P. Briegleb, , and W. G. Strand, 1996: The NCAR CSM sea ice model. NCAR Tech. Note NCAR/TN-425+STR, 25 pp.

  • Braconnot, P., 2000: PMIP, Paleoclimate Modeling Intercomparison Project. WCRP Report WCRP-111, WMO/TD 1007, 271 pp.

  • Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Climate Past, 3 , 261277.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., , and S. Manabe, 1987: The influence of continental ice, atmospheric CO2, and land albedo on the climate of the Last Glacial maximum. Climate Dyn., 1 , 8799.

    • Search Google Scholar
    • Export Citation
  • Casty, C., and Coauthors, 2005: Recurrent climate winter regimes in reconstructed and modelled 500 hPa geopotential height fields over the North Atlantic/European sector 1659–1990. Climate Dyn., 24 , 809822.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., , and J. G. A. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36 , 12051216.

  • Cheng, X., , and J. M. Wallace, 1993: Cluster analysis of the Northern Hemisphere wintertime 500-hPa height field: Spatial patterns. J. Atmos. Sci., 50 , 26742696.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2003: Evidence for nonlinear climate change: Two stratospheric regimes and a regime shift. J. Climate, 16 , 36813689.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2005: The shortcomings of nonlinear principal component analysis in identifying circulation regimes. J. Climate, 18 , 48144823.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2007: Atmospheric circulation regimes: Can cluster analysis provide the number? J. Climate, 20 , 22292250.

  • Cole, J., 2001: A slow dance for El Niño. Science, 291 , 14961497.

  • Cook, K. H., , and I. M. Held, 1988: Stationary waves of the Ice Age climate. J. Climate, 1 , 807819.

  • Corti, S., , F. Molteni, , and T. Palmer, 1999: Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature, 398 , 799802.

    • Search Google Scholar
    • Export Citation
  • Crommelin, D., 2003: Regime transitions and heteroclinic connections in a barotropic atmosphere. J. Atmos. Sci., 60 , 229246.

  • Crommelin, D., 2004: Observed nondiffusive dynamics in large-scale atmospheric flow. J. Atmos. Sci., 61 , 23842396.

  • Crowley, T. J., 1995: Ice age terrestrial carbon changes revisited. Global Biogeochem. Cycles, 9 , 377389.

  • de Beaulieu, J-L., and Coauthors, 1999: Maps of the world environments during the last two climatic extremes. Commision de la Carte Géologique du Monde and Agence Nationale pout la Gestion des Déchets Radioactifs, 22 pp.

  • Dethloff, K., and Coauthors, 2006: A dynamical link between the Arctic and the global climate system. Geophys. Res. Lett., 33 .L03703, doi:10.1029/2005GL025245.

    • Search Google Scholar
    • Export Citation
  • Drake, J., , I. Foster, , J. Michalakes, , B. Toonen, , and P. Worley, 1995: Design and performance of a scalable parallel community climate model. Parallel Comput., 21 , 15711591.

    • Search Google Scholar
    • Export Citation
  • Gladstone, R. M., and Coauthors, 2005: Mid-Holocene NAO: A PMIP2 model intercomparison. Geophys. Res. Lett., 32 .L16707, doi:10.1029/2005GL023596.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., 1997: Low-frequency variability in a GCM: Three-dimensional flow regimes and their dynamics. J. Climate, 10 , 13571379.

  • Hansen, A. R., , and A. Sutera, 1995: The probability density distribution of the planetary-scale atmospheric wave amplitude revisited. J. Atmos. Sci., 52 , 24632472.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., 1985: Persistence of the 500 mb height field during Northern Hemisphere winter. Mon. Wea. Rev., 113 , 20302042.

  • Hoskins, B. J., , and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Hsu, C. J., , and F. Zwiers, 2001: Climate change in recurrent regimes and modes of Northern Hemisphere atmospheric variability. J. Geophys. Res., 106 , 2014520159.

    • Search Google Scholar
    • Export Citation
  • Itoh, H., , and M. Kimoto, 1996: Multiple attractors and chaotic itinerancy in a quasigeostrophic model with realistic topography: Implications for weather regimes and low-frequency variability. J. Atmos. Sci., 53 , 22172231.

    • Search Google Scholar
    • Export Citation
  • Itoh, H., , and M. Kimoto, 1997: Chaotic itinerancy with preferred transition routes appearing in an atmospheric model. Physica D, 109 , 274292.

    • Search Google Scholar
    • Export Citation
  • Itoh, H., , and M. Kimoto, 1999: Weather regimes, low-frequency oscillations, and principal patterns of variability: A perspective of extratropical low-frequency variability. J. Atmos. Sci., 56 , 26842705.

    • Search Google Scholar
    • Export Citation
  • Jacob, R., 1997: Low frequency variability in a simulated atmosphere ocean system. Ph.D. thesis, University of Wisconsin—Madison, 159 pp.

  • Jacob, R., , C. Schafer, , I. Foster, , M. Tobis, , and J. Anderson, 2001: Computational design and performance of the Fast Ocean Atmosphere Model, version one. Computational Science ICCS 2001, V. N. Alexandrov et al., Eds., Springer, 175–184.

    • Search Google Scholar
    • Export Citation
  • Justino, F., , and W. R. Peltier, 2005: The glacial North Atlantic Oscillation. Geophys. Res. Lett., 32 .L21803, doi:10.1029/2005GL023822.

  • Justino, F., , A. Timmermann, , U. Merkel, , and E. P. Souza, 2005: Synoptic reorganization of atmospheric flow during the Last Glacial Maximum. J. Climate, 18 , 28262846.

    • Search Google Scholar
    • Export Citation
  • Kageyama, M., , F. D’Andrea, , G. Ramstein, , P. J. Valdes, , and R. Vautard, 1999: Weather regimes in past climate atmospheric general circulation model simulations. Climate Dyn., 15 , 773793.

    • Search Google Scholar
    • Export Citation
  • Keeley, S. P. E., , M. Collins, , and A. J. Thorpe, 2008: Northern Hemisphere winter atmospheric climate: Modes of natural variability and climate change. Climate Dyn., 31 , 195211.

    • Search Google Scholar
    • Export Citation
  • Kimoto, M., , and M. Ghil, 1993a: Multiple flow regimes in the Northern Hemisphere winter. Part I: Methodology and hemispheric regimes. J. Atmos. Sci., 50 , 26252644.

    • Search Google Scholar
    • Export Citation
  • Kimoto, M., , and M. Ghil, 1993b: Multiple flow regimes in the Northern Hemisphere winter. Part II: Sectorial regimes and preferred transitions. J. Atmos. Sci., 50 , 26452673.

    • Search Google Scholar
    • Export Citation
  • Legras, B., , and M. Ghil, 1985: Persistent anomalies, blocking and variations in atmospheric predictability. J. Atmos. Sci., 42 , 433471.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , J. Kutzbach, , and L. Wu, 2000: Modeling climate shift of El Niño variability in the Holocene. Geophys. Res. Lett., 27 , 22652268.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , B. Otto-Bliesner, , J. Kutzbach, , L. Li, , and C. Shields, 2003: Coupled climate simulation of the evolution of global monsoons in the Holocene. J. Climate, 16 , 24722490.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , S. P. Harrison, , J. Kutzbach, , and B. Otto-Bliesner, 2004: Global monsoons in the mid-Holocene and oceanic feedback. Climate Dyn., 22 , 157182.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20 , 130141.

  • Marshall, A. G., , and A. H. Lynch, 2006: Time-slice analysis of the Australian summer monsoon during the late Quaternary using the Fast Ocean Atmosphere Model. J. Quat. Sci., 21 , 789801.

    • Search Google Scholar
    • Export Citation
  • Michelangeli, P., , R. Vautard, , and B. Legras, 1995: Weather regimes: Recurrence and quasi-stationarity. J. Atmos. Sci., 52 , 12371256.

  • Miller, J. R., , G. L. Russell, , and G. Caliri, 1994: Continental-scale river flow in climate models. J. Climate, 7 , 914928.

  • Mo, K. C., , and M. Ghil, 1987: Statistics and dynamics of persistent anomalies. J. Atmos. Sci., 44 , 877902.

  • Mo, K. C., , and M. Ghil, 1988: Cluster analysis of multiple planetary flow regimes. J. Geophys. Res., 93 , 1092710952.

  • Molteni, F., , and S. Corti, 1998: Long term fluctuations in the statistical properties of low-frequency variability: Dynamical origin and predictability. Quart. J. Roy. Meteor. Soc., 124 , 495526.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., , and J. C. Fyfe, 2007: Comments on “The shortcomings of nonlinear principal component analysis in identifying circulation regimes”. J. Climate, 20 , 375377.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., , J. C. Fyfe, , and G. M. Flato, 2000: A regime view of Northern Hemisphere atmospheric variability and change under global warming. Geophys. Res. Lett., 27 , 11391142.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., , L. Pandolfo, , and J. C. Fyfe, 2001: The preferred structure of variability of the Northern Hemisphere atmospheric circulation. Geophys. Res. Lett., 28 , 10191022.

    • Search Google Scholar
    • Export Citation
  • North, R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., , K. W. Dixon, , and A. Rosati, 1991: GFDL Modular Ocean Model, user’s guide version 1.0. GFDL Ocean Group Tech. Rep. 2, 16 pp.

  • Palmer, T. N., 1993: Extended-range atmospheric prediction and the Lorenz model. Bull. Amer. Meteor. Soc., 74 , 4965.

  • Palmer, T. N., 1999: A nonlinear dynamical perspective on climate prediction. J. Climate, 12 , 575591.

  • Peltier, W. R., 2004: Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) Model and GRACE. Annu. Rev. Earth Planet. Sci., 32 , 111149.

    • Search Google Scholar
    • Export Citation
  • Reinhold, B. B., , and R. T. Pierrehumbert, 1982: Dynamics of weather regimes: Quasi-stationary waves and blocking. Mon. Wea. Rev., 110 , 11051145.

    • Search Google Scholar
    • Export Citation
  • Rind, D., 1987: Components of the ice age circulation. J. Geophys. Res., 92 , 42414281.

  • Robertson, A. W., , and M. Ghil, 1999: Large-scale weather regimes and local climate over the western United States. J. Climate, 12 , 17961813.

    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., 1939: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacement of the semi-permanent centers of action. J. Mar. Res., 2 , 3855.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., , and A. Neumaier, 2001: Algorithm 808: ARFIT—A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Software, 27 , 5865.

    • Search Google Scholar
    • Export Citation
  • Sempf, M., , K. Dethloff, , D. Handorf, , and M. Kurgansky, 2007a: Circulation regimes due to attractor merging in atmospheric models. J. Atmos. Sci., 64 , 20292044.

    • Search Google Scholar
    • Export Citation
  • Sempf, M., , K. Dethloff, , D. Handorf, , and M. Kurgansky, 2007b: Toward understanding the dynamical origin of atmospheric regime behavior in a baroclinic model. J. Atmos. Sci., 64 , 887904.

    • Search Google Scholar
    • Export Citation
  • Silverman, B. W., 1986: Density Estimation for Statistics and Data Analysis. Chapman and Hall, 176 pp.

  • Smyth, P., , K. Ide, , and M. Ghil, 1999: Multiple regimes in Northern Hemisphere height fields via mixture model clustering. J. Atmos. Sci., 56 , 37043723.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., , A. Hannachi, , and A. O’Neill, 2004: On the existence of multiple climate regimes. Quart. J. Roy. Meteor. Soc., 130 , 583606.

    • Search Google Scholar
    • Export Citation
  • Straus, D., , and F. Molteni, 2004: Circulation regimes and SST forcing: Results from large GCM ensembles. J. Climate, 17 , 16411656.

  • Thompson, D. W. J., , and J. M. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., , B. Legras, , and M. Deque, 1988: On the source of midlatitude low-frequency variability. Part I: A statistical approach to persistence. J. Atmos. Sci., 45 , 28112844.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., , and F. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109 , 784812.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , Y. Zhang, , and L. Bajuk, 1996: Interpretation of interdecadal trends in Northern Hemisphere surface air temperature. J. Climate, 9 , 249259.

    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., , D. Handorf, , and K. Dethloff, 2001: On the structure and variability of atmospheric circulation regimes in coupled climate models. Atmos. Sci. Lett., 2 , 7280.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 32 7
PDF Downloads 5 5 1

Climate Regime Variability for Past and Present Time Slices Simulated by the Fast Ocean Atmosphere Model

View More View Less
  • 1 Research Department, Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany
  • | 2 Met Office Hadley Centre, Exeter, United Kingdom
  • | 3 School of Geography and Environmental Science, Monash University, Victoria, Australia
© Get Permissions
Restricted access

Abstract

This paper presents an analysis of Northern Hemisphere climate regime variability for three different time slices, simulated by the Fast Ocean Atmosphere Model (FOAM). The three time slices are composed of present-day conditions, the mid-Holocene, and the Last Glacial Maximum (LGM). Climate regimes have been determined by analyzing the structure of a spherical probability density function in a low-dimensional state space spanned by the three leading empirical orthogonal functions. This study confirms the ability of the FOAM medium-resolution climate model to reproduce low-frequency climate variability in the form of regime-like behavior. Three to four regimes have been detected for each time slice. Compared with present-day conditions, new climate regimes appeared for the LGM. For the mid-Holocene, which had slightly different boundary conditions and external forcings than the present-day simulation, the frequency of occurrence of the regimes was altered while only slight changes were found in the structure of some regimes.

Corresponding author address: Dörthe Handorf, Research Department, Alfred Wegener Institute for Polar and Marine Research, Potsdam, Telegrafenberg A43, D-14473 Germany. Email: doerthe.handorf@awi.de

Abstract

This paper presents an analysis of Northern Hemisphere climate regime variability for three different time slices, simulated by the Fast Ocean Atmosphere Model (FOAM). The three time slices are composed of present-day conditions, the mid-Holocene, and the Last Glacial Maximum (LGM). Climate regimes have been determined by analyzing the structure of a spherical probability density function in a low-dimensional state space spanned by the three leading empirical orthogonal functions. This study confirms the ability of the FOAM medium-resolution climate model to reproduce low-frequency climate variability in the form of regime-like behavior. Three to four regimes have been detected for each time slice. Compared with present-day conditions, new climate regimes appeared for the LGM. For the mid-Holocene, which had slightly different boundary conditions and external forcings than the present-day simulation, the frequency of occurrence of the regimes was altered while only slight changes were found in the structure of some regimes.

Corresponding author address: Dörthe Handorf, Research Department, Alfred Wegener Institute for Polar and Marine Research, Potsdam, Telegrafenberg A43, D-14473 Germany. Email: doerthe.handorf@awi.de

Save