• Achuta Rao, K., , and K. R. Sperber, 2000: El Niño Southern Oscillation in coupled models. PCMDI Rep. 61, PCMDI, Lawrence Livermore National Laboratory, University of California, Livermore, CA, 46 pp.

  • Achuta Rao, K., , and K. R. Sperber, 2006: ENSO simulation in coupled ocean-atmosphere models: Are the current models better? Climate Dyn., 27 , 115. doi:10.1007/s00382-006-0119-7.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., and Coauthors, 2006: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn., 56 , 543567.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., , and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry, and nonlinearity. J. Atmos. Sci., 46 , 16871712.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Busalacchi, A. J., , and J. J. O’Brien, 1981: Interannual variability of the equatorial Pacific in the 1960’s. J. Geophys. Res., 86 , 1090110907.

    • Search Google Scholar
    • Export Citation
  • Chang, P., , L. Ji, , B. Wang, , and T. Li, 1995: Interactions between the seasonal cycle and El Niño–Southern Oscillation in an intermediate coupled ocean–atmosphere model. J. Atmos. Sci., 52 , 23532372.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and The CMIP Modelling Groups, 2005: El Niño- or La Niña-like climate change? Climate Dyn., 24 , 89104. doi:10.1007/s00382-004-0478-x.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • Davey, M. K., and Coauthors, 2002: STOIC: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18 , 403420.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., , and S. G. H. Philander, 2000: Is El Niño changing? Science, 288 , 19972002.

  • Fedorov, A. V., , and S. G. H. Philander, 2001: A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14 , 30863101.

    • Search Google Scholar
    • Export Citation
  • Fichefet, T., , and M. A. Morales Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102 , 1260912646.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., , E. Guilyardi, , A. Navarra, , S. Masina, , and P. Delecluse, 2003: The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Climate Dyn., 10 , 567582.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26 , 329348.

  • Guilyardi, E., , P. Delecluse, , S. Gualdi, , and A. Navarra, 2003: Mechanisms for ENSO phase change in a coupled GCM. J. Climate, 16 , 11411158.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., and Coauthors, 2004: Representing El Niño in coupled ocean–atmosphere GCMs: The dominant role of the atmospheric component. J. Climate, 17 , 46234629.

    • Search Google Scholar
    • Export Citation
  • Jin, F. F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Jochum, M., , R. Murtugudde, , R. Ferrari, , and P. Malanotte-Rizzoli, 2005: The impact of horizontal resolution on the equatorial mixed layer heat budget in ocean general circulation models. J. Climate, 18 , 841851.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Large, W. G., , and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 111 pp. [Available online at http://www.cgd.ucar.edu/oce/pubs/04pubs_files/TN460.pdf.].

  • Latif, M., , T. P. Barnett, , M. A. Cane, , M. Flugel, , N. E. Graham, , H. Von Storch, , J. S. Xu, , and S. E. Zebiak, 1994: A review of ENSO prediction studies. Climate Dyn., 9 , 167179.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 2001: ENSIP: The El Niño Simulation Intercomparison Project. Climate Dyn., 18 , 255276.

  • Levitus, S., and Coauthors, 1998: World Ocean Data Base 1998. NOAA Atlas NESDIS 18, 346 pp.

  • Lin, J-L., 2007: Interdecadal variability of ENSO in 21 IPCC AR4 coupled GCMs. Geophys. Res. Lett., 34 .L12702, doi:10.1029/2006GL028937.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2002: A simple model study of ENSO suppression by external periodic forcing. J. Climate, 15 , 10881098.

  • Lohmann, K., , and M. Latif, 2005: Tropical Pacific decadal variability and the subtropical–tropical cells. J. Climate, 18 , 51635178.

    • Search Google Scholar
    • Export Citation
  • Luo, J-J., , S. Masson, , E. Roeckner, , G. Madec, , and T. Yamagata, 2005: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18 , 23442360.

    • Search Google Scholar
    • Export Citation
  • Ma, C-C., , C. R. Mechoso, , A. W. Robertson, , and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean–atmosphere GCM study. J. Climate, 9 , 16351645.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pole de modélisation 27, Institut Pierre-Simon Laplace, 193 pp.

  • Madec, G., , P. Delecluse, , M. Imbard, , and C. Lévy, 1998: OPA 8.1 Ocean General Circulation Model reference manual. Note du Pole de modélisation 11, Institut Pierre-Simon Laplace, 91 pp.

  • McPhaden, M. J., , S. P. Hayes, , L. J. Mangum, , and J. M. Toole, 1990: Variability in the western equatorial Pacific Ocean during the 1986–87 El Niño/Southern Oscillation event. J. Phys. Oceanogr., 20 , 190208.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The tropical ocean global atmosphere observing system: A decade of progress. J. Geophys. Res., 103 , C7. 1416914240.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , P. R. Gent, , J. M. Arblaster, , B. L. Otto-Bliesner, , E. C. Brady, , and A. Craig, 2001: Factors that affect the amplitude of El Niño in global coupled climate models. Climate Dyn., 17 , 515526.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and Coauthors, 1992: Tropical air–sea interaction in general circulation models. Climate Dyn., 7 , 73104.

  • Neelin, J. D., , M. Latif, , and F-F. Jin, 1994: Dynamics of coupled ocean–atmosphere models: The tropical problem. Annu. Rev. Fluid Mech., 26 , 617659.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , D. S. Battisti, , A. C. Hirst, , F-F. Jin, , Y. Wakata, , T. Yamagata, , and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , C7. 1426114290.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., , D. Gu, , G. Lambert, , T. Li, , D. Halpern, , N-C. Lau, , and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9 , 29582972.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology Rep. 349, 127 pp. [Available from MPI for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany.].

  • Roeckner, E., and Coauthors, 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19 , 37713791.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., , and M. J. Suarez, 1988: Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci., 45 , 549566.

  • Solomon, A., , and D. Zhang, 2006: Pacific subtropical cell variability in coupled climate model simulations of the late 19th–20th century. Ocean Modell., 15 , 236249. doi:10.1016/j.ocemod.2006.03.007.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , Z. Chen, , M. Marquis, , K. B. Averyt, , M. Tignor, , and H. L. Miller, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., , J. Oberhuber, , A. Bacher, , M. Esch, , M. Latif, , and E. Roeckner, 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398 , 694697.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59 , 19171942.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., 2006: OASIS3 user guide. PRISM Tech. Rep. 3, 64 pp. [Available online at http://www.prism.enes.org/Publications/Reports/oasis3_UserGuide_T3.pdf.].

  • van Oldenborgh, G. J., , S. Y. Philip, , and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1 , 8195.

  • Xie, S-P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., , and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 188 187 26
PDF Downloads 230 230 23

Tropical Pacific Climate and Its Response to Global Warming in the Kiel Climate Model

View More View Less
  • 1 Leibniz-Institut für Meereswissenschaften, Kiel, Germany
  • | 2 NEC Laboratories Europe, NEC Europe Ltd., Sankt Augustin, Germany
  • | 3 Max-Planck-Institut für Meteorologie, Hamburg, Germany
  • | 4 LOCEAN, Institut Pierre Simon Laplace, Paris, France
© Get Permissions
Restricted access

Abstract

A new, non-flux-corrected, global climate model is introduced, the Kiel Climate Model (KCM), which will be used to study internal climate variability from interannual to millennial time scales and climate predictability of the first and second kind. The version described here is a coarse-resolution version that will be employed in extended-range integrations of several millennia. KCM’s performance in the tropical Pacific with respect to mean state, annual cycle, and El Niño–Southern Oscillation (ENSO) is described. Additionally, the tropical Pacific response to global warming is studied.

Overall, climate drift in a multicentury control integration is small. However, KCM exhibits an equatorial cold bias at the surface of the order 1°C, while strong warm biases of several degrees are simulated in the eastern tropical Pacific on both sides off the equator, with maxima near the coasts. The annual and semiannual cycles are realistically simulated in the eastern and western equatorial Pacific, respectively. ENSO performance compares favorably to observations with respect to both amplitude and period.

An ensemble of eight greenhouse warming simulations was performed, in which the CO2 concentration was increased by 1% yr−1 until doubling was reached, and stabilized thereafter. Warming of equatorial Pacific sea surface temperature (SST) is, to first order, zonally symmetric and leads to a sharpening of the thermocline. ENSO variability increases because of global warming: during the 30-yr period after CO2 doubling, the ensemble mean standard deviation of Niño-3 SST anomalies is increased by 26% relative to the control, and power in the ENSO band is almost doubled. The increased variability is due to both a strengthened (22%) thermocline feedback and an enhanced (52%) atmospheric sensitivity to SST; both are associated with changes in the basic state. Although variability increases in the mean, there is a large spread among ensemble members and hence a finite probability that in the “model world” no change in ENSO would be observed.

Corresponding author address: Dr. Wonsun Park, Leibniz Institute of Marine Sciences (IFM-GEOMAR), Duesternbrooker Weg 20, D-24105 Kiel, Germany. Email: wpark@ifm-geomar.de

Abstract

A new, non-flux-corrected, global climate model is introduced, the Kiel Climate Model (KCM), which will be used to study internal climate variability from interannual to millennial time scales and climate predictability of the first and second kind. The version described here is a coarse-resolution version that will be employed in extended-range integrations of several millennia. KCM’s performance in the tropical Pacific with respect to mean state, annual cycle, and El Niño–Southern Oscillation (ENSO) is described. Additionally, the tropical Pacific response to global warming is studied.

Overall, climate drift in a multicentury control integration is small. However, KCM exhibits an equatorial cold bias at the surface of the order 1°C, while strong warm biases of several degrees are simulated in the eastern tropical Pacific on both sides off the equator, with maxima near the coasts. The annual and semiannual cycles are realistically simulated in the eastern and western equatorial Pacific, respectively. ENSO performance compares favorably to observations with respect to both amplitude and period.

An ensemble of eight greenhouse warming simulations was performed, in which the CO2 concentration was increased by 1% yr−1 until doubling was reached, and stabilized thereafter. Warming of equatorial Pacific sea surface temperature (SST) is, to first order, zonally symmetric and leads to a sharpening of the thermocline. ENSO variability increases because of global warming: during the 30-yr period after CO2 doubling, the ensemble mean standard deviation of Niño-3 SST anomalies is increased by 26% relative to the control, and power in the ENSO band is almost doubled. The increased variability is due to both a strengthened (22%) thermocline feedback and an enhanced (52%) atmospheric sensitivity to SST; both are associated with changes in the basic state. Although variability increases in the mean, there is a large spread among ensemble members and hence a finite probability that in the “model world” no change in ENSO would be observed.

Corresponding author address: Dr. Wonsun Park, Leibniz Institute of Marine Sciences (IFM-GEOMAR), Duesternbrooker Weg 20, D-24105 Kiel, Germany. Email: wpark@ifm-geomar.de

Save