• Belchansky, G. I., , D. C. Douglas, , and N. G. Platonov, 2004: Duration of the Arctic sea ice melt season: Regional and interannual variability, 1979–2001. J. Climate, 17 , 6780.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1969: A numerical method for the study of the circulation of the world oceans. J. Comput. Phys., 4 , 347376.

  • Comiso, J., 2002: A rapidly declining perennial sea ice cover in the Arctic. Geophys. Res. Lett., 29 .1956, doi:10.1029/2002GL015650.

  • Comiso, J., , C. Parkinson, , R. Gersten, , and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35 .L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Cox, M. D., 1984: A primitive equation, three-dimensional model of the oceans. GFDL Ocean Group Tech. Rep. 1, NOAA/GFDL, 250 pp.

  • Dukowicz, J. K., , and R. D. Smith, 1994: Implicit free-surface method for the Bryan–Cox–Semtner ocean model. J. Geophys. Res., 99 , 79918014.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., , T. Mauritsen, , M. Tjernström, , E. Källén, , and G. Svensson, 2007: Vertical structure of recent Arctic warming. Nature, 451 , 5356.

    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., 1980: Modeling a variable thickness sea ice cover. Mon. Wea. Rev., 108 , 19431973.

  • Holland, M., , C. Bitz, , and B. Tremblay, 2006: Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett., 33 .L23503, doi:10.1029/2006GL028024.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kay, J. E., , T. L’Ecuyer, , A. Gettelman, , G. Stephens, , and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35 .L08503, doi:10.1029/2008GL033451.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2008: Summer sea ice motion from the 18 GHz channel of AMSR-E and the exchange of sea ice between the Pacific and Atlantic sectors. Geophys. Res. Lett., 35 .L03504, doi:10.1029/2007GL032692.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R., , and J. Zhang, 2005: The thinning of Arctic sea ice, 1988–2003: Have we passed a tipping point? J. Climate, 18 , 48794894.

    • Search Google Scholar
    • Export Citation
  • Maslanik, J., , C. Fowler, , J. Stroeve, , S. Drobot, , J. Zwally, , D. Yi, , and W. Emery, 2007: A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophys. Res. Lett., 34 .L24501, doi:10.1029/2007GL032043.

    • Search Google Scholar
    • Export Citation
  • Meier, W., , F. Fetterer, , K. Knowles, , M. Savoie, , and M. J. Brodzik, cited. 2006: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data. National Snow and Ice Data Center, Boulder, Colorado, digital media. [Available online at http://nsidc.org/data/nsidc-0051.html.].

  • Meier, W., , J. Stroeve, , and F. Fetterer, 2007: Whither Arctic sea ice? A clear signal of decline regionally, seasonally and extending beyond the satellite record. Ann. Glaciol., 46 , 428434.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., , and W. M. Washington, 1979: Large-scale numerical-model of sea ice. J. Geophys. Res., 84 , 311337.

  • Parkinson, C. L., , and D. Cavalieri, 2008: Arctic sea ice variability and trends, 1979–2006. J. Geophys. Res., 113 .C07003, doi:10.1029/2007JC004558.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., , S. V. Nghiem, , T. Markus, , and A. Schweiger, 2007: Seasonal evolution and interannual variability of the local solar energy absorbed by the Arctic sea ice–ocean system. J. Geophys. Res., 112 .C03005, doi:10.1029/2006JC003558.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., , J. A. Richter-Menge, , K. F. Jones, , and B. Light, 2008: Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35 .L11501, doi:10.1029/2008GL034007.

    • Search Google Scholar
    • Export Citation
  • Rampal, P., , J. Weiss, , and D. Marsan, 2007: Evidence for significant acceleration of arctic sea ice drift over the last 25 years. Eos, Trans. Amer. Geophys. Union, 88 .(Fall Meeting Suppl.) Abstract C11B-0438.

    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., , and J. M. Wallace, 2004: Variations in age of Arctic sea ice and summer sea-ice extent. Geophys. Res. Lett., 31 .L09401, doi:10.1029/2004GL019492.

    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., , J. M. Wallace, , and R. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15 , 26482663.

  • Rothrock, D. A., , J. Zhang, , and Y. Yu, 2003: The Arctic ice thickness anomaly of the 1990s: A consistent view from observations and models. J. Geophys. Res., 108 .3083, doi:10.1029/2001JC001208.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., , J. Zhang, , R. W. Lindsay, , and M. Steele, 2008: Did unusually sunny skies help drive the record sea ice minimum of 2007? Geophys. Res. Lett., 35 .L10503, doi:10.1029/2008GL033463.

    • Search Google Scholar
    • Export Citation
  • Semtner Jr, A. J., 1986: Finite-difference formulation of a World Ocean model. Advanced Physical Oceanographic Numerical Modeling, J. O’Brien, Ed., NATO ASI Series C, Vol. 186, D. Reidel, 187–202.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., , J. K. Dukowicz, , and R. C. Malone, 1992: Parallel ocean general circulation modeling. Physica D, 60 , 3861.

  • Steele, M., , and G. Flato, 2000: Sea ice growth, melt, and modeling: A survey. The Freshwater Budget of the Arctic Ocean, E. L. Lewis, Ed., NATO Advanced Research Workshop Series, Kluwer, 549–587.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., , M. Serreze, , S. Drobot, , S. Gearhead, , M. Holland, , J. Maslanik, , W. Meier, , and T. Scambos, 2008: Arctic sea ice extent plummets in 2007. Eos, Trans. Amer. Geophys. Union, 89 , 2. 1314.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., 2005: Warming of the arctic ice–ocean system is faster than the global average since the 1960s. Geophys. Res. Lett., 32 .L19602, doi:10.1029/2005GL024216.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , and W. D. Hibler III, 1997: On an efficient numerical method for modeling sea ice dynamics. J. Geophys. Res., 102 , 86918702.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , and D. A. Rothrock, 2001: A thickness and enthalpy distribution sea-ice model. J. Phys. Oceanogr., 31 , 29863001.

  • Zhang, J., , and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131 , 681697.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , and D. A. Rothrock, 2005: The effect of sea-ice rheology in numerical investigations of climate. J. Geophys. Res., 110 .C08014, doi:10.1029/2004JC002599.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , R. Lindsay, , M. Steele, , and A. Schweiger, 2008: What drove the dramatic retreat of Arctic sea ice during summer 2007? Geophys. Res. Lett., 35 .L11505, doi:10.1029/2008GL034005.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 283 283 28
PDF Downloads 122 122 15

Arctic Sea Ice Retreat in 2007 Follows Thinning Trend

View More View Less
  • 1 Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.

Corresponding author address: Ron Lindsay, Polar Science Center, 1013 NE 40th St., Seattle, WA 98105. Email: lindsay@apl.washington.edu

Abstract

The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.

Corresponding author address: Ron Lindsay, Polar Science Center, 1013 NE 40th St., Seattle, WA 98105. Email: lindsay@apl.washington.edu

Save