A Test of the Simulation of Tropical Convective Cloudiness by a Cloud-Resolving Model

Mario A. Lopez Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Mario A. Lopez in
Current site
Google Scholar
PubMed
Close
,
Dennis L. Hartmann Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Dennis L. Hartmann in
Current site
Google Scholar
PubMed
Close
,
Peter N. Blossey Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Peter N. Blossey in
Current site
Google Scholar
PubMed
Close
,
Robert Wood Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Robert Wood in
Current site
Google Scholar
PubMed
Close
,
Christopher S. Bretherton Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Christopher S. Bretherton in
Current site
Google Scholar
PubMed
Close
, and
Terence L. Kubar Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Terence L. Kubar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A methodology is described for testing the simulation of tropical convective clouds by models through comparison with observations of clouds and precipitation from earth-orbiting satellites. Clouds are divided into categories that represent convective cores: moderately thick anvil clouds and thin high clouds. Fractional abundances of these clouds are computed as a function of rain rate. A three-dimensional model is forced with steady forcing characteristics of tropical Pacific convective regions, and the model clouds are compared with satellite observations for the same regions. The model produces a good simulation of the relationship between the precipitation rate and optically thick cold clouds that represent convective cores. The observations show large abundances of anvil cloud with a strong dependence on rain rate, but the model produces too little anvil cloud by a factor of about 4 and with a very weak dependence on the rain rate. The observations also show probability density functions for outgoing longwave radiation (OLR) and albedo with maxima that correspond to extended upper-level cold clouds, whereas the model does not. The sensitivity of the anvil cloud simulation to model parameters is explored using a two-dimensional model. Both cloud physical parameters and mean wind shear effects are investigated. The simulation of anvil cloud can be improved while maintaining a good simulation of optically thick cloud by adjusting the cloud physics parameters in the model to produce more ice cloud and less liquid water cloud.

Corresponding author address: Dennis L. Hartmann, Department of Atmospheric Sciences, University of Washington, P.O. Box 351640, Seattle, WA 98195-1640. Email: dhartm@washington.edu

Abstract

A methodology is described for testing the simulation of tropical convective clouds by models through comparison with observations of clouds and precipitation from earth-orbiting satellites. Clouds are divided into categories that represent convective cores: moderately thick anvil clouds and thin high clouds. Fractional abundances of these clouds are computed as a function of rain rate. A three-dimensional model is forced with steady forcing characteristics of tropical Pacific convective regions, and the model clouds are compared with satellite observations for the same regions. The model produces a good simulation of the relationship between the precipitation rate and optically thick cold clouds that represent convective cores. The observations show large abundances of anvil cloud with a strong dependence on rain rate, but the model produces too little anvil cloud by a factor of about 4 and with a very weak dependence on the rain rate. The observations also show probability density functions for outgoing longwave radiation (OLR) and albedo with maxima that correspond to extended upper-level cold clouds, whereas the model does not. The sensitivity of the anvil cloud simulation to model parameters is explored using a two-dimensional model. Both cloud physical parameters and mean wind shear effects are investigated. The simulation of anvil cloud can be improved while maintaining a good simulation of optically thick cloud by adjusting the cloud physics parameters in the model to produce more ice cloud and less liquid water cloud.

Corresponding author address: Dennis L. Hartmann, Department of Atmospheric Sciences, University of Washington, P.O. Box 351640, Seattle, WA 98195-1640. Email: dhartm@washington.edu

Save
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41 , 253264.

    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33 , L17810. doi:10.1029/2006GL026672.

    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., C. S. Bretherton, J. Cetrone, and M. Khairoutdinov, 2007: Cloud-resolving model simulations of KWAJEX: Model sensitivities and comparisons with satellite and radar observations. J. Atmos. Sci., 64 , 14881508.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19 , 34453482.

  • Bretherton, C. S., P. N. Blossey, and M. E. Peters, 2006: Interpretation of simple and cloud-resolving simulations of moist convection-radiation interaction with a mock-Walker circulation. Theor. Comput. Fluid Dyn., 20 , 421442.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., R. A. Houze Jr., and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53 , 13801409.

    • Search Google Scholar
    • Export Citation
  • Chen, T., W. B. Rossow, and Y. C. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13 , 264286.

  • Comstock, J. M., and C. Jakob, 2004: Evaluation of tropical cirrus cloud properties derived from ECMWF model output and ground based measurements over Nauru Island. Geophys. Res. Lett., 31 , L10106. doi:10.1029/2004GL019539.

    • Search Google Scholar
    • Export Citation
  • DeMoss, J. D., and K. P. Bowman, 2007: Changes in TRMM rainfall due to the orbit boost estimated from buoy rain gauge data. J. Atmos. Oceanic Technol., 24 , 15981607.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., C. J. Seman, R. S. Hemler, and S. M. Fan, 2001: A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model. J. Climate, 14 , 34443463.

    • Search Google Scholar
    • Export Citation
  • Eitzen, Z. A., and K-M. Xu, 2005: A statistical comparison of deep convective cloud objects observed by an Earth Observing System satellite and simulated by a cloud-resolving model. J. Geophys. Res., 110 , D15S14. doi:10.1029/2004JD005086.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50 , 20082025.

  • Fu, Q., S. K. Krueger, and K. N. Liou, 1995: Interactions of radiation and convection in simulated tropical cloud clusters. J. Atmos. Sci., 52 , 13101328.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58 , 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003a: Impact of ice microphysics on multiscale organization of tropical convection in two-dimensional cloud-resolving simulations. Quart. J. Roy. Meteor. Soc., 129 , 6781.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003b: MJO-like coherent structures: Sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 60 , 847864.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003c: Impact of cloud microphysics on convective–radiative quasi equilibrium revealed by cloud-resolving convection parameterization. J. Climate, 16 , 34633475.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., J. I. Yano, and M. W. Moncrieff, 2000: Cloud resolving modeling of tropical circulations driven by large-scale SST gradients. J. Atmos. Sci., 57 , 20222039.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., H. H. Hendon, and R. A. Houze, 1982: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41 , 113121.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5 , 12811304.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., L. A. Moy, and Q. Fu, 2001: Tropical convection and the energy balance at the top of the atmosphere. J. Climate, 14 , 44954511.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and K. Woodberry, 1993: The diurnal cycle of tropical convection. J. Geophys. Res., 98 , 1662316637.

  • Heymsfield, A. J., 2003: Properties of tropical and midlatitude ice cloud particle ensembles. Part II: Applications for mesoscale and climate models. J. Atmos. Sci., 60 , 25922611.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60 , 396410.

  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60 , 607625.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., Q. A. Fu, K. N. Liou, and H. N. S. Chin, 1995: Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34 , 281287.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. L. Hartmann, and R. Wood, 2007: Radiative and convective driving of tropical high clouds. J. Climate, 20 , 55105526.

  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40 , 18011820.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., C-H. Sui, M-D. Chou, and W-K. Tao, 1994: An inquiry into the cirrus-cloud thermostat effect for tropical sea-surface temperature. Geophys. Res. Lett., 21 , 11571160.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and R. A. Houze, 1980: The contribution of mesoscale motions to the mass and heat fluxes of an intense tropical convective system. J. Atmos. Sci., 37 , 784796.

    • Search Google Scholar
    • Export Citation
  • Li, J-L., and B. Mapes, 2004: Wind shear effects on cloud-radiation feedback in the western Pacific warm pool. Geophys. Res. Lett., 31 , L16118. doi:10.1029/2004GL020199.

    • Search Google Scholar
    • Export Citation
  • Li, J-L., B. Mapes, M. H. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61 , 296309.

    • Search Google Scholar
    • Export Citation
  • Li, J-L., and Coauthors, 2005: Comparisons of EOS MLS cloud ice measurements with ECMWF analyses and GCM simulations: Initial results. Geophys. Res. Lett., 32 , L18710. doi:10.1029/2005GL023788.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., S. K. Krueger, G. G. Mace, and K-M. Xu, 2003: Cirrus cloud properties from a cloud-resolving model simulation compared to cloud radar observations. J. Atmos. Sci., 60 , 510525.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., S. K. Krueger, and S. Moorthi, 2005: Cloud properties simulated by a single-column model. Part I: Comparison to cloud radar observations of cirrus clouds. J. Atmos. Sci., 62 , 14281445.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., K-M. Xu, B. A. Wielicki, T. Wong, and Z. A. Eitzen, 2007: Statistical analyses of satellite cloud object data from CERES. Part III: Comparison with cloud-resolving model simulations of tropical convective clouds. J. Atmos. Sci., 64 , 762785.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze Jr., 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121 , 13981416.

  • Mapes, B. E., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42 , 329.

    • Search Google Scholar
    • Export Citation
  • Miura, H., H. Tomita, T. Nasuno, S. Iga, M. Satoh, and T. Matsuno, 2005: A climate sensitivity test using a global cloud resolving model under an aqua planet condition. Geophys. Res. Lett., 32 , L19717. doi:10.1029/2005GL023672.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66 , 823839.

    • Search Google Scholar
    • Export Citation
  • Ovtchinnikov, M., T. Ackerman, R. Marchand, and M. Khairoutdinov, 2006: Evaluation of the multiscale modeling framework using data from the atmospheric radiation measurement program. J. Climate, 19 , 17161729.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and S. Garner, 2006: Sensitivity of radiative–convective equilibrium simulations to horizontal resolution. J. Atmos. Sci., 63 , 19101923.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003a: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84 , 15471564.

    • Search Google Scholar
    • Export Citation
  • Randall, D., and Coauthors, 2003b: Confronting models with data: The GEWEX Cloud Systems Study. Bull. Amer. Meteor. Soc., 84 , 455469.

    • Search Google Scholar
    • Export Citation
  • Remote Sensing Systems, 2006: Updates to the AMSR-E V05 algorithm. Remote Sensing Systems Tech. Rep. 020706, 5 pp.

  • Ringer, M. A., and R. P. Allan, 2004: Evaluating climate model simulations of tropical cloud. Tellus, 56A , 308327.

  • Rossow, W. B., G. Tselioudis, A. Polak, and C. Jakob, 2005: Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. Res. Lett., 32 , L21812. doi:10.1029/2005GL024584.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze, and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61 , 13411358.

    • Search Google Scholar
    • Export Citation
  • Shie, C. L., W. K. Tao, J. Simpson, and C. H. Sui, 2003: Quasi-equilibrium states in the tropics simulated by a cloud-resolving model. Part I: Specific features and budget analysis. J. Climate, 16 , 817833.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Su, H., C. S. Bretherton, and S. S. Chen, 2000: Self-aggregation and large-scale control of tropical deep convection: A modeling study. J. Atmos. Sci., 57 , 17971816.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and G. C. Craig, 1998: Radiative-convective equilibrium in a three-dimensional cloud-ensemble model. Quart. J. Roy. Meteor. Soc., 124 , 20732097.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T., C. D. Kummerow, and R. Ferraro, 2003: Rainfall algorithms for AMSR-E. IEEE Trans. Geosci. Remote Sens., 41 , 204214.

  • Wu, X., 2002: Effects of ice microphysics on tropical radiative–convective–oceanic quasi-equilibrium states. J. Atmos. Sci., 59 , 18851897.

    • Search Google Scholar
    • Export Citation
  • Wu, X., W. D. Hall, W. W. Grabowski, M. W. Moncrieff, W. D. Collins, and J. T. Kiehl, 1999: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part II: Effects of ice microphysics on cloud–radiation interaction. J. Atmos. Sci., 56 , 31773195.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, J. T. Bacmeister, J. T. Kiehl, I. M. Held, M. Zhao, S. A. Klein, and B. J. Soden, 2006a: A comparison of low-latitude cloud properties and their response to climate change in three AGCMs sorted into regimes using mid-tropospheric vertical velocity. Climate Dyn., 27 , 261279.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., M. Khairoutdinov, and C. S. Bretherton, 2006b: Climate sensitivity and cloud response of a GCM with a superparameterization. Geophys. Res. Lett., 33 , L06714. doi:10.1029/2005GL025464.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y. P., and Coauthors, 2007: Use of high-resolution satellite observations to evaluate cloud and precipitation statistics from cloud-resolving model simulations. Part I: South China Sea Monsoon Experiment. J. Atmos. Sci., 64 , 43094329.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 135 43 1
PDF Downloads 83 32 2