Do Models and Observations Disagree on the Rainfall Response to Global Warming?

Beate G. Liepert Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York

Search for other papers by Beate G. Liepert in
Current site
Google Scholar
PubMed
Close
and
Michael Previdi Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York

Search for other papers by Michael Previdi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recently analyzed satellite-derived global precipitation datasets from 1987 to 2006 indicate an increase in global-mean precipitation of 1.1%–1.4% decade−1. This trend corresponds to a hydrological sensitivity (HS) of 7% K−1 of global warming, which is close to the Clausius–Clapeyron (CC) rate expected from the increase in saturation water vapor pressure with temperature. Analysis of two available global ocean evaporation datasets confirms this observed intensification of the atmospheric water cycle. The observed hydrological sensitivity over the past 20-yr period is higher by a factor of 5 than the average HS of 1.4% K−1 simulated in state-of-the-art coupled atmosphere–ocean climate models for the twentieth and twenty-first centuries. However, the analysis shows that the interdecadal variability in HS in the models is high—in particular in the twentieth-century runs, which are forced by both increasing greenhouse gas (GHG) and tropospheric aerosol concentrations. About 12% of the 20-yr time intervals of eight twentieth-century climate simulations from the third phase of the Coupled Model Intercomparison Project (CMIP3) have an HS magnitude greater than the CC rate of 6.5% K−1. The analysis further indicates different HS characteristics for GHG and tropospheric aerosol forcing agents. Aerosol-forced HS is a factor of 2 greater, on average, and the interdecadal variability is significantly larger, with about 23% of the 20-yr sensitivities being above the CC rate. By thermodynamically constraining global precipitation changes, it is shown that such changes are linearly related to the difference in the radiative imbalance at the top of the atmosphere (TOA) and the surface (i.e., the atmospheric radiative energy imbalance). The strength of this relationship is controlled by the modified Bowen ratio (here, global sensible heat flux change divided by latent heat flux change). Hydrological sensitivity to aerosols is greater than the sensitivity to GHG because the former have a stronger effect on the shortwave transmissivity of the atmosphere, and thus produce a larger change in the atmospheric radiative energy imbalance. It is found that the observed global precipitation increase of 13 mm yr−1 decade−1 from 1987 to 2006 would require a trend of the atmospheric radiative imbalance (difference between the TOA and the surface) of 0.7 W m−2 decade−1. The recovery from the El Chichón and Mount Pinatubo volcanic aerosol injections in 1982 and 1991, the satellite-observed reductions in cloudiness during the phase of increasing ENSO events in the 1990s, and presumably the observed reduction of anthropogenic aerosol concentrations could have caused such a radiative imbalance trend over the past 20 years. Observational evidence, however, is currently inconclusive, and it will require more detailed investigations and longer satellite time series to answer this question.

Corresponding author address: Beate Liepert, Lamont-Doherty Earth Observatory, 61 Route 9W, Palisades, NY 10964. Email: liepert@ldeo.columbia.edu

Abstract

Recently analyzed satellite-derived global precipitation datasets from 1987 to 2006 indicate an increase in global-mean precipitation of 1.1%–1.4% decade−1. This trend corresponds to a hydrological sensitivity (HS) of 7% K−1 of global warming, which is close to the Clausius–Clapeyron (CC) rate expected from the increase in saturation water vapor pressure with temperature. Analysis of two available global ocean evaporation datasets confirms this observed intensification of the atmospheric water cycle. The observed hydrological sensitivity over the past 20-yr period is higher by a factor of 5 than the average HS of 1.4% K−1 simulated in state-of-the-art coupled atmosphere–ocean climate models for the twentieth and twenty-first centuries. However, the analysis shows that the interdecadal variability in HS in the models is high—in particular in the twentieth-century runs, which are forced by both increasing greenhouse gas (GHG) and tropospheric aerosol concentrations. About 12% of the 20-yr time intervals of eight twentieth-century climate simulations from the third phase of the Coupled Model Intercomparison Project (CMIP3) have an HS magnitude greater than the CC rate of 6.5% K−1. The analysis further indicates different HS characteristics for GHG and tropospheric aerosol forcing agents. Aerosol-forced HS is a factor of 2 greater, on average, and the interdecadal variability is significantly larger, with about 23% of the 20-yr sensitivities being above the CC rate. By thermodynamically constraining global precipitation changes, it is shown that such changes are linearly related to the difference in the radiative imbalance at the top of the atmosphere (TOA) and the surface (i.e., the atmospheric radiative energy imbalance). The strength of this relationship is controlled by the modified Bowen ratio (here, global sensible heat flux change divided by latent heat flux change). Hydrological sensitivity to aerosols is greater than the sensitivity to GHG because the former have a stronger effect on the shortwave transmissivity of the atmosphere, and thus produce a larger change in the atmospheric radiative energy imbalance. It is found that the observed global precipitation increase of 13 mm yr−1 decade−1 from 1987 to 2006 would require a trend of the atmospheric radiative imbalance (difference between the TOA and the surface) of 0.7 W m−2 decade−1. The recovery from the El Chichón and Mount Pinatubo volcanic aerosol injections in 1982 and 1991, the satellite-observed reductions in cloudiness during the phase of increasing ENSO events in the 1990s, and presumably the observed reduction of anthropogenic aerosol concentrations could have caused such a radiative imbalance trend over the past 20 years. Observational evidence, however, is currently inconclusive, and it will require more detailed investigations and longer satellite time series to answer this question.

Corresponding author address: Beate Liepert, Lamont-Doherty Earth Observatory, 61 Route 9W, Palisades, NY 10964. Email: liepert@ldeo.columbia.edu

Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. Gu, J-J. Wang, G. J. Huffman, S. Curtis, and D. Bolvin, 2008: Relationships between global precipitation and surface temperature on interannual and longer time scales (1979–2006). J. Geophys. Res., 113 , D22104. doi:10.1029/2008JD010536.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., and B. J. Soden, 2007: Large discrepancy between observed and simulated precipitation trends in the ascending and descending branches of the tropical circulation. Geophys. Res. Lett., 34 , L18705. doi:10.1029/2007GL031460.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419 , 224232.

  • Andersson, A., S. Bakan, K. Fennig, H. Grassl, C-P. Klepp, and J. Schulz, 2007: Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS-3 monthly mean. World Data Center for Climate, doi:10.1594/WDCC/HOAPS3_MONTHLY.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 1993: Climate change and the regulation of the surface moisture and energy budgets. Climate Dyn., 8 , 225239.

  • Chen, J., B. E. Carlson, and A. D. Del Genio, 2002: Evidence for strengthening of the tropical general circulation in the 1990s. Science, 295 , 838841.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Feichter, J., U. Lohmann, B. Liepert, and E. Roeckner, 2004: Nonlinear aspects of the climate response to greenhouse gas and aerosol forcing. J. Climate, 17 , 23842398.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., A. J. Weaver, F. W. Zwiers, and M. F. Wehner, 2004: Detection of volcanic influence on global precipitation. Geophys. Res. Lett., 31 , L12217. doi:10.1029/2004GL020044.

    • Search Google Scholar
    • Export Citation
  • Gu, G., R. F. Adler, G. J. Huffman, and S. Curtis, 2007: Tropical rainfall variability on interannual-to-interdecadal and longer time scales derived from the GPCP monthly product. J. Climate, 20 , 40334046.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005a: Earth’s energy imbalance: Confirmation and implications. Science, 308 , 14311435. doi:10.1126/science.1110252.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005b: Efficacy of climate forcings. J. Geophys. Res., 110 , D18104. doi:10.1029/2005JD005776.

  • Hansen, J., and Coauthors, 2007: Climate simulations for 1880–2003 with GISS modelE. Climate Dyn., 29 , 661696. doi:10.1007/s00382-007-0255-8.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19 , 56865699.

  • Kim, D., and V. Ramanathan, 2008: Solar radiation budget and radiative forcing due to aerosols and clouds. J. Geophys. Res., 113 , D2203. doi:10.1029/2007JD008434.

    • Search Google Scholar
    • Export Citation
  • Koch, D., 2001: Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM. J. Geophys. Res., 106 , 2031120332.

    • Search Google Scholar
    • Export Citation
  • Liepert, B. G., 2002: Observed reductions in surface solar radiation in the United States and worldwide from 1961 to 1990. Geophys. Res. Lett., 29 , 1421. doi:10.1029/2002GL014910.

    • Search Google Scholar
    • Export Citation
  • Liepert, B. G., and I. Tegen, 2002: Multidecadal solar radiation trends in the United States and Germany and direct tropospheric aerosol forcing. J. Geophys. Res., 107 , 4153. doi:10.1029/2001JD000760.

    • Search Google Scholar
    • Export Citation
  • Liepert, B. G., J. Feichter, U. Lohmann, and E. Roeckner, 2004: Can aerosols spin down the water cycle in a warmer and moister world? Geophys. Res. Lett., 31 , L06207. doi:10.1029/2003GL019060.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: The response of the extratropical hydrological cycle to global warming. J. Climate, 20 , 34703484.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., I. V. Geogdzhayev, W. B. Rossow, B. Cairns, B. E. Carlson, A. A. Lacis, L. Liu, and L. D. Travis, 2007: Long-term satellite record reveals likely recent aerosol trend. Science, 315 , 1543. doi:10.1126/science.1136709.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., C. A. Wilson, and W. M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113 , 293322.

    • Search Google Scholar
    • Export Citation
  • Romanou, A., B. Liepert, G. A. Schmidt, W. B. Rossow, R. A. Ruedy, and Y-C. Zhang, 2007: 20th century changes in surface solar irradiance in simulations and observations. Geophys. Res. Lett., 34 , L05713. doi:10.1029/2006GL028356.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2000a: Interpreting differential temperature trends at the surface and in the lower troposphere. Science, 287 , 12271232.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000b: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105 , 73377356.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and A. Dai, 2007: Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett., 34 , L15702. doi:10.1029/2007GL030524.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24 , 741758. doi:10.1007/s00382-005-0017-4.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317 , 233235.

  • Wielicki, B. A., and Coauthors, 2002: Evidence for large decadal variability in the tropical mean radiative energy budget. Science, 295 , 841844.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. Arkin, 1998: Global monthly precipitation estimates from satellite-observed outgoing longwave radiation. J. Climate, 11 , 137164.

    • Search Google Scholar
    • Export Citation
  • Yin, X., A. Gruber, and P. Arkin, 2004: Comparison of the GPCP and CMAP merged gauge–satellite monthly precipitation products for the period 1979–2001. J. Hydrometeor., 5 , 12071222.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88 , 527539.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, P. Stackhouse Jr., A. Romanou, and B. A. Wielicki, 2007: Decadal variations of global energy and ocean heat budget and meridional energy transports inferred from recent global data sets. J. Geophys. Res., 112 , D22101. doi:10.1029/2007JD008435.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1141 384 59
PDF Downloads 341 112 21