Evaluation of Forecasted Southeast Pacific Stratocumulus in the NCAR, GFDL, and ECMWF Models

Cécile Hannay National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Cécile Hannay in
Current site
Google Scholar
PubMed
Close
,
David L. Williamson National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by David L. Williamson in
Current site
Google Scholar
PubMed
Close
,
James J. Hack National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by James J. Hack in
Current site
Google Scholar
PubMed
Close
,
Jeffrey T. Kiehl National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Jeffrey T. Kiehl in
Current site
Google Scholar
PubMed
Close
,
Jerry G. Olson National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Jerry G. Olson in
Current site
Google Scholar
PubMed
Close
,
Stephen A. Klein Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Stephen A. Klein in
Current site
Google Scholar
PubMed
Close
,
Christopher S. Bretherton Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Christopher S. Bretherton in
Current site
Google Scholar
PubMed
Close
, and
Martin Köhler European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Martin Köhler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Forecasts of southeast Pacific stratocumulus at 20°S and 85°W during the East Pacific Investigation of Climate (EPIC) cruise of October 2001 are examined with the ECMWF model, the Atmospheric Model (AM) from GFDL, the Community Atmosphere Model (CAM) from NCAR, and the CAM with a revised atmospheric boundary layer formulation from the University of Washington (CAM-UW). The forecasts are initialized from ECMWF analyses and each model is run for 3–5 days to determine the differences with the EPIC field observations.

Observations during the EPIC cruise show a well-mixed boundary layer under a sharp inversion. The inversion height and the cloud layer have a strong and regular diurnal cycle. A key problem common to the models is that the planetary boundary layer (PBL) depth is too shallow when compared to EPIC observations. However, it is suggested that improved PBL depths are achieved with more physically realistic PBL schemes: at one end, CAM uses a dry and surface-driven PBL scheme and produces a very shallow PBL, while the ECWMF model uses an eddy-diffusivity/mass-flux approach and produces a deeper and better-mixed PBL. All the models produce a strong diurnal cycle in the liquid water path (LWP), but there are large differences in the amplitude and phase when compared to the EPIC observations. This, in turn, affects the radiative fluxes at the surface and the surface energy budget. This is particularly relevant for coupled simulations as this can lead to a large SST bias.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Cécile Hannay, National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO 80305. Email: hannay@ucar.edu

Abstract

Forecasts of southeast Pacific stratocumulus at 20°S and 85°W during the East Pacific Investigation of Climate (EPIC) cruise of October 2001 are examined with the ECMWF model, the Atmospheric Model (AM) from GFDL, the Community Atmosphere Model (CAM) from NCAR, and the CAM with a revised atmospheric boundary layer formulation from the University of Washington (CAM-UW). The forecasts are initialized from ECMWF analyses and each model is run for 3–5 days to determine the differences with the EPIC field observations.

Observations during the EPIC cruise show a well-mixed boundary layer under a sharp inversion. The inversion height and the cloud layer have a strong and regular diurnal cycle. A key problem common to the models is that the planetary boundary layer (PBL) depth is too shallow when compared to EPIC observations. However, it is suggested that improved PBL depths are achieved with more physically realistic PBL schemes: at one end, CAM uses a dry and surface-driven PBL scheme and produces a very shallow PBL, while the ECWMF model uses an eddy-diffusivity/mass-flux approach and produces a deeper and better-mixed PBL. All the models produce a strong diurnal cycle in the liquid water path (LWP), but there are large differences in the amplitude and phase when compared to the EPIC observations. This, in turn, affects the radiative fluxes at the surface and the surface energy budget. This is particularly relevant for coupled simulations as this can lead to a large SST bias.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Cécile Hannay, National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO 80305. Email: hannay@ucar.edu

Save
  • Ahlgrimm, M., and D. A. Randall, 2006: Diagnosing monthly mean boundary layer properties from reanalysis data using a bulk boundary layer model. J. Atmos. Sci., 63 , 9981012.

    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., 2005: An integrated turbulence scheme for boundary layers with shallow cumulus applied to pollutant transport. J. Appl. Meteor., 44 , 14361452.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., S. K. Krueger, W. S. Lewellen, E. van Meijgaard, C. H. Moeng, D. A. Randall, A. van Ulden, and S. Wang, 1996: Modeling a stratocumulus-topped PBL: Intercomparison among different one-dimensional codes and with large eddy simulation. Bull. Amer. Meteor. Soc., 77 , 20332042.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and M. L. Salby, 1997: The role of cloud diurnal variations in the time-mean energy budget. J. Climate, 10 , 11141124.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32 , L20806. doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., P. J. Rasch, J. J. Hack, and J. R. McCaa, 2006: Representation of clouds and precipitation processes in the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21842198.

    • Search Google Scholar
    • Export Citation
  • Boyle, J. S., and Coauthors, 2005: Diagnosis of Community Atmospheric Model 2 (CAM2) in numerical weather forecast configuration at Atmospheric Radiation Measurement sites. J. Geophys. Res., 110 , D15S15. doi:10.1029/2004JD005042.

    • Search Google Scholar
    • Export Citation
  • Boyle, J. S., S. Klein, G. Zhang, S. Xie, and X. Wei, 2008: Climate model forecast experiments for TOGA COARE. Mon. Wea. Rev., 136 , 808842.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, in press.

  • Bretherton, C. S., and Coauthors, 2004: The EPIC 2001 Stratocumulus Study. Bull. Amer. Meteor. Soc., 85 , 967977.

  • Bushell, A. C., and G. M. Martin, 1999: The impact of vertical resolution upon GCM simulations of marine stratocumulus. Climate Dyn., 15 , 293318.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., C. S. Bretherton, and R. Wood, 2005: Mixed-layer budget analysis of the diurnal cycle of entrainment in southeast Pacific stratocumulus. J. Atmos. Sci., 62 , 37753791.

    • Search Google Scholar
    • Export Citation
  • Colbo, K., 2005: IMET sensor accuracy. Woods Hole Oceanographic Institution Upper Ocean Processes Group Tech. Note, 2 pp. [Available online at http://uop.whoi.edu/techdocs/technote/TN05_09SensorAccuracy.pdf.].

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). National Center for Atmospheric Research Tech. Rep. NCAR/TN-464+STR, 226 pp. [Available online at http://www.library.ucar.edu/uhtbin/cgisirsi/20090203214420/SIRSI/0/520/DR000776.].

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., and J. Teixeira, 2001: Comparison of the ECMWF reanalysis with FIRE I observations: Diurnal variation of marine stratocumulus. J. Climate, 14 , 14661478.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., and Coauthors, 2004: Observations and numerical simulations of the diurnal cycle of the EUROCS stratocumulus case. Quart. J. Roy. Meteor. Soc., 130 , 32693296.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and R. Muñoz, 2004: The diurnal cycle in circulation and cloudiness over the subtropical southeast Pacific: A modeling study. J. Climate, 17 , 16991710.

    • Search Google Scholar
    • Export Citation
  • GFDL Global Atmospheric Model Development Team, 2004: The new GFDL Global Atmosphere and Land Model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17 , 46414673.

    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., P. Källberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ECMWF Reanalysis Project Report Series 1, 72 pp.

    • Search Google Scholar
    • Export Citation
  • Grenier, H., and C. S. Bretherton, 2001: A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Wea. Rev., 129 , 357377.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., 1994: Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). J. Geophys. Res., 99 , 55415568.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., J. M. Caron, S. G. Yeager, K. W. Oleson, M. M. Holland, J. E. Truesdale, and P. J. Rasch, 2006: Simulation of the global hydrological cycle in the CCSM Community Atmosphere Model version 3 (CAM3): Mean features. J. Climate, 19 , 21992221.

    • Search Google Scholar
    • Export Citation
  • Hoinka, K. P., 2007: Semi-diurnal pressure fluctuation in the ERA40 data. Meteor. Z., 16 , 255260.

  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6 , 18251842.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary data set for the Community Atmosphere Model. J. Climate, 21 , 51455153.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and P. R. Gent, 2004: The Community Climate System Model, version 2. J. Climate, 17 , 36663682.

  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41 , 442458. doi:10.1109/TGRS.2002.808226.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15871606.

  • Klein, S. A., X. Jiang, J. Boyle, S. Malyshev, and S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33 , L18805. doi:10.1029/2006GL027567.

    • Search Google Scholar
    • Export Citation
  • Köhler, M., 2005: Improved prediction of boundary layer clouds. ECMWF Newsletter, No. 104, ECMWF, Reading, United Kingdom, 18–22. [Available online at http://www.ecmwf.int/publications/newsletters/pdf/104.pdf.].

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., 2001: The numerical representation of entrainment in parameterizations of boundary layer turbulent mixing. Mon. Wea. Rev., 129 , 11481163.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128 , 31873199.

    • Search Google Scholar
    • Export Citation
  • Ma, C-C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean–atmosphere GCM study. J. Climate, 9 , 16351645.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51 , 18231842.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123 , 28252838.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 2005: VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS). VOCALS Science Plan, 42 pp. [Available online at http://www.eol.ucar.edu/projects/vocals/science_planning/VOCALS-Science-Plan.pdf.].

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., and Coauthors, 1996: Simulation of a stratocumulus-topped planetary boundary layer: Intercomparison among different numerical codes. Bull. Amer. Meteor. Soc., 77 , 261278.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85 , 369432.

  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Petch, J. C., M. Willett, R. Y. Wong, and S. J. Woolnough, 2007: Modelling suppressed and active convection. Comparing a numerical weather prediction, cloud-resolving and single-column model. Quart. J. Roy. Meteor. Soc., 133 , 10871100.

    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and Coauthors, 2004: Evaluating parameterizations in general circulation models: Climate simulation meets weather prediction. Bull. Amer. Meteor. Soc., 85 , 19031915.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473. doi:10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Pope, V. D., J. A. Pamment, D. R. Jackson, and A. Slingo, 2001: The representation of water vapor and its dependence on vertical resolution in the Hadley Centre Climate Model. J. Climate, 14 , 30653085.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., and J. E. Kristjansson, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11 , 15871614.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612288.

  • Rotstayn, L. D., B. F. Ryan, and J. J. Katzfey, 2000: A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models. Mon. Wea. Rev., 128 , 10701088.

    • Search Google Scholar
    • Export Citation
  • Rozendaal, M. A., C. B. Leovy, and S. A. Klein, 1995: An observational study of diurnal variations of marine stratiform cloud. J. Climate, 8 , 17951809.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., J. S. Wakefield, E. J. Steiner, and S. K. Cox, 1979: Marine stratocumulus convection. Part I: Governing equations and horizontally homogeneous solutions. J. Atmos. Sci., 36 , 12861307.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci., 52 , 650666.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and J. Teixeira, 2000: An advection-diffusion scheme for the convective boundary layer: Description and 1D results. Proc. 14th Symp. on Boundary Layers and Turbulence, Aspen, CO, Amer. Meteor. Soc., 4.16.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2004: Cloud representation in general-circulation models over the northern Pacific Ocean: A EUROCS intercomparison study. Quart. J. Roy. Meteor. Soc., 130 , 32453267.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64 , 12301248.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113 , 899927.

    • Search Google Scholar
    • Export Citation
  • Soares, P. M. M., P. M. A. Miranda, A. P. Siebesma, and J. Teixeira, 2004: An eddy-diffusivity/mass-flux parameterization for dry and shallow cumulus convection. Quart. J. Roy. Meteor. Soc., 130 , 33653384.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and Chemistry of Marine Stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84 , 579593.

  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133 , 14431462.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., A. Beljaars, S. Bordoni, C. Holloway, M. Köhler, S. Krueger, V. Savic-Jovcic, and Y. Zhang, 2007: On the structure of the lower troposphere in the summertime stratocumulus regime of the northeast Pacific. Mon. Wea. Rev., 135 , 9851005.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., D. Williamson, and F. Zwiers, 2000: The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. PCMDI Rep. 60, 28 pp. [Available online at http://www-pcmdi.llnl.gov/publications/pdf/60.pdf.].

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., P. May, M. Flatau, and T. F. Hogan, 2008: SST sensitivity of a global ocean–atmosphere coupled system to the parameterization of boundary layer clouds. J. Mar. Syst., 69 , 2936. doi:10.1016/j.jmarsys.2007.02.012.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121 , 30403061.

  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59 , 19171942.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and Coauthors, 2004: Moist physical processes in the IFS: Progress and plans. ECMWF Tech. Memo. 452, 91 pp. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/401-500/tm452.pdf.].

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012. doi:10.1256/qj.04.176.

  • vanZanten, M. C., and B. Stevens, 2005: Observations of the structure of heavily precipitating marine stratocumulus. J. Atmos. Sci., 62 , 43274342.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and X. Bian, 1996: Solar semidiurnal tides in the troposphere: Detection by radar profilers. Bull. Amer. Meteor. Soc., 77 , 529542.

    • Search Google Scholar
    • Export Citation
  • Willett, M. R., P. Bechtold, D. L. Williamson, J. C. Petch, S. F. Milton, and S. J. Woolnough, 2008: Modelling suppressed and active convection: Comparisons between three global atmosphere models. Quart. J. Roy. Meteor. Soc., 134 , 18811896.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., and J. G. Olson, 2007: A comparison of forecast errors in CAM2 and CAM3 at the ARM Southern Great Plains Site. J. Climate, 20 , 45724585.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., and Coauthors, 2005: Moisture and temperature balances at the Atmospheric Radiation Measurement Southern Great Plains Site in forecasts with the Community Atmosphere Model (CAM2). J. Geophys. Res., 110 , D15S16. doi:10.1029/2004JD005109.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, N-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19 , 698722.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2004: Boundary layer depth, entrainment, and decoupling in the cloud-capped subtropical and tropical marine boundary layer. J. Climate, 17 , 35763588.

    • Search Google Scholar
    • Export Citation
  • Wood, R., C. S. Bretherton, and D. L. Hartmann, 2002: Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophys. Res. Lett., 29 , 2092. doi:10.1029/2002GL015371.

    • Search Google Scholar
    • Export Citation
  • Wood, R., C. S. Bretherton, B. Huebert, C. R. Mechoso, and R. Weller, 2007: VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study. WCRP and Cosponsors Program Summary, 9 pp. [Available online at http://www.eol.ucar.edu/projects/vocals/documentation/vocals_overview.pdf.].

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., and Coauthors, 2007: A single-column model intercomparison of a heavily drizzling stratocumulus-topped boundary layer. J. Geophys. Res., 112 , D24204. doi:10.1029/2007JD008536.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and S. K. Krueger, 1991: Evaluation of cloudiness parameterizations using a cumulus ensemble model. Mon. Wea. Rev., 119 , 342367.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. Z., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre General Circulation Model. Atmos.–Ocean, 33 , 407446.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., W. Lin, C. S. Bretherton, J. J. Hack, and P. J. Rasch, 2003: A modified formulation of fractional stratiform condensation rate in the NCAR Community Atmospheric Model (CAM2). J. Geophys. Res., 108 , 4035. doi:10.1029/2002JD002523.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., and Coauthors, 2005: Intercomparison and interpretation of single-column model simulations of a nocturnal stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 133 , 27412758.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and D. L. Hartmann, 1995: Satellite determination of stratus cloud microphysical properties. J. Climate, 8 , 16381657.

  • Zuidema, P., E. R. Westwater, C. Fairall, and D. Hazen, 2005: Ship-based liquid water path estimates in marine stratocumulus. J. Geophys. Res., 110 , D20206. doi:10.1029/2005JD005833.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 226 82 6
PDF Downloads 114 44 3