Modeling of Polar Ocean Tides at the Last Glacial Maximum: Amplification, Sensitivity, and Climatological Implications

Stephen D. Griffiths Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Stephen D. Griffiths in
Current site
Google Scholar
PubMed
Close
and
W. Richard Peltier Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by W. Richard Peltier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Diurnal and semidiurnal ocean tides are calculated for both the present day and the Last Glacial Maximum. A numerical model with complete global coverage and enhanced resolution at high latitudes is used including the physics of self-attraction and loading and internal tide drag. Modeled present-day tidal amplitudes are overestimated at the standard resolution, but the error decreases as the resolution increases. It is argued that such results, which can be improved in the future using higher-resolution simulations, are preferable to those obtained by artificial enhancement of dissipative processes. For simulations at the Last Glacial Maximum a new version of the ICE-5G topographic reconstruction is used along with density stratification determined from coupled atmosphere–ocean climate simulations. The model predicts a significant amplification of tides around the Arctic and Antarctic coastlines, and these changes are interpreted in terms of Kelvin wave dynamics with the aid of an exact analytical solution for propagation around a polar continent or basin. These polar tides are shown to be highly sensitive to the assumed location of the grounding lines of coastal ice sheets, and the way in which this may contribute to an interaction between tides and climate change is discussed. Globally, the picture is one of energized semidiurnal tides at the Last Glacial Maximum, with an increase in tidal dissipation from present-day values, the dominant energy sink being the conversion to internal waves.

Corresponding author address: Dr. Stephen D. Griffiths, Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom. Email: sdg@maths.leeds.ac.uk

This article included in the Polar Climate Stability special collection.

Abstract

Diurnal and semidiurnal ocean tides are calculated for both the present day and the Last Glacial Maximum. A numerical model with complete global coverage and enhanced resolution at high latitudes is used including the physics of self-attraction and loading and internal tide drag. Modeled present-day tidal amplitudes are overestimated at the standard resolution, but the error decreases as the resolution increases. It is argued that such results, which can be improved in the future using higher-resolution simulations, are preferable to those obtained by artificial enhancement of dissipative processes. For simulations at the Last Glacial Maximum a new version of the ICE-5G topographic reconstruction is used along with density stratification determined from coupled atmosphere–ocean climate simulations. The model predicts a significant amplification of tides around the Arctic and Antarctic coastlines, and these changes are interpreted in terms of Kelvin wave dynamics with the aid of an exact analytical solution for propagation around a polar continent or basin. These polar tides are shown to be highly sensitive to the assumed location of the grounding lines of coastal ice sheets, and the way in which this may contribute to an interaction between tides and climate change is discussed. Globally, the picture is one of energized semidiurnal tides at the Last Glacial Maximum, with an increase in tidal dissipation from present-day values, the dominant energy sink being the conversion to internal waves.

Corresponding author address: Dr. Stephen D. Griffiths, Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom. Email: sdg@maths.leeds.ac.uk

This article included in the Polar Climate Stability special collection.

Save
  • Adkins, J. F., K. McIntyre, and D. P. Schrag, 2002: The salinity, temperature, and δ18O of the glacial deep ocean. Science, 298 , 17691773.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. B., S. S. Shipp, A. L. Lowe, J. S. Wellner, and A. B. Mosola, 2002: The Antarctic ice sheet during the Last Glacial Maximum and its subsequent retreat history: A review. Quat. Sci. Rev., 21 , 4970.

    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. M. Mishonov, and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, 182 pp.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., S. T. Garner, R. W. Hallberg, and H. L. Simmons, 2004a: The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Res., 51 , 30693101.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., D. R. MacAyeal, J. X. Mitrovica, and G. A. Milne, 2004b: Palaeoclimate: Ocean tides and Heinrich events. Nature, 432 , 460. doi:10.1038/432460a.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., P. St-Laurent, G. Sutherland, and C. Garrett, 2007: On the resonance and influence of the tides in Ungava Bay and Hudson Strait. Geophys. Res. Lett., 34 , L17606. doi:10.1029/2007GL030845.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., J. X. Mitrovica, D. R. MacAyeal, and G. A. Milne, 2008: On the factors behind large Labrador Sea tides during the last glacial cycle and the potential implications for Heinrich events. Paleoceanography, 23 , PA3211. doi:10.1029/2007PA001573.

    • Search Google Scholar
    • Export Citation
  • Bindschadler, R. A., M. A. King, R. B. Alley, S. Anandakrishnan, and L. Padman, 2003: Tidally controlled stick-slip discharge of a West Antarctic ice stream. Science, 301 , 10871089. doi:10.1126/science.1087231.

    • Search Google Scholar
    • Export Citation
  • Carrère, L., and F. Lyard, 2003: Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing—Comparisons with observations. Geophys. Res. Lett., 30 , 1275. doi:10.1029/2002GL016473.

    • Search Google Scholar
    • Export Citation
  • Carter, L., H. L. Neil, and L. Northcote, 2002: Late Quaternary ice-rafting events in the SW Pacific Ocean, off eastern New Zealand. Mar. Geol., 191 , 1935.

    • Search Google Scholar
    • Export Citation
  • Darby, D. A., J. F. Bischof, R. F. Spielhagen, S. A. Marshall, and S. W. Herman, 2002: Arctic ice export events and their potential impact on global climate during the late Pleistocene. Paleoceanography, 17 , 1025. doi:10.1029/2001PA000639.

    • Search Google Scholar
    • Export Citation
  • Dyke, A. S., J. T. Andrews, P. U. Clark, J. H. England, G. H. Miller, J. Shaw, and J. J. Veillette, 2002: The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quat. Sci. Rev., 21 , 931.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2003: Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys. Res. Lett., 30 , 1907. doi:10.1029/2003GL017676.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., A. F. Bennett, and M. G. G. Foreman, 1994: TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res., 99 , 2482124852.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., R. D. Ray, and B. G. Bills, 2004: Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J. Geophys. Res., 109 , C03003. doi:10.1029/2003JC001973.

    • Search Google Scholar
    • Export Citation
  • England, J., N. Atkinson, J. Bednarski, A. S. Dyke, D. A. Hodgson, and Cofaigh, 2006: The Innuitian Ice Sheet: Configuration, dynamics and chronology. Quat. Sci. Rev., 25 , 689703. doi:10.1016/j.quascirev.2005.08.007.

    • Search Google Scholar
    • Export Citation
  • Farrell, W. E., 1973: Deformation of the earth by surface loads. Rev. Geophys. Space Phys., 10 , 761797.

  • Garrett, C., 1972: Tidal resonance in the Bay of Fundy and Gulf of Maine. Nature, 238 , 441443. doi:10.1038/238441a0.

  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39 , 5787. doi:10.1146/annurev.fluid.39.050905.110227.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Griffiths, S. D., and R. H. J. Grimshaw, 2007: Internal tide generation at the continental shelf modeled using a modal decomposition: Two-dimensional results. J. Phys. Oceanogr., 37 , 428451.

    • Search Google Scholar
    • Export Citation
  • Griffiths, S. D., and W. R. Peltier, 2008: Megatides in the Arctic Ocean under glacial conditions. Geophys. Res. Lett., 35 , L08605. doi:10.1029/2008GL033263.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, G. H., 2006: Fortnightly variations in the flow velocity of Rutford Ice Stream, West Antarctica. Nature, 444 , 10631064. doi:10.1038/nature05430.

    • Search Google Scholar
    • Export Citation
  • Hemming, S. R., 2004: Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys., 42 , RG1005. doi:10.1029/2003RG000128.

    • Search Google Scholar
    • Export Citation
  • Hendershott, M. C., 1972: The effects of solid earth deformation on global ocean tides. Geophys. J. Int., 29 , 389402.

  • Holloway, G., and A. Proshutinsky, 2007: Role of tides in Arctic ocean/ice climate. J. Geophys. Res., 112 , C04S06. doi:10.129/2006JC003643.

    • Search Google Scholar
    • Export Citation
  • Hulbe, C. L., D. R. MacAyeal, G. H. Denton, J. Kleman, and T. V. Lowell, 2004: Catastrophic ice shelf breakup as the source of Heinrich event icebergs. Paleoceanography, 19 , PA1004. doi:10.1029/2003PA000890.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28 , 811814.

  • Kanfoush, S. L., D. A. Hodell, C. D. Charles, T. P. Guilderson, P. G. Mortyn, and U. S. Ninnemann, 2000: Millennial-scale instability of the Antarctic ice sheet during the last glaciation. Science, 288 , 18151818.

    • Search Google Scholar
    • Export Citation
  • Kanfoush, S. L., D. A. Hodell, C. D. Charles, T. R. Janecek, and F. R. Rack, 2002: Comparison of ice-rafted debris and physical properties in ODP Site 1094 (South Atlantic) with the Vostok ice core over the last four climatic cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol., 182 , 329349.

    • Search Google Scholar
    • Export Citation
  • Kowalik, Z., and A. Y. Proshutinsky, 1994: The Arctic Ocean tides. The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 137–158.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, 182 pp.

    • Search Google Scholar
    • Export Citation
  • Lyard, F., F. Lefevre, T. Letellier, and O. Francis, 2006: Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn., 56 , 394415. doi:10.1007/s10236-006-0086-x.

    • Search Google Scholar
    • Export Citation
  • Montenegro, Á, M. Eby, A. J. Weaver, and S. R. Jayne, 2007: Response of a climate model to tidal mixing parameterization under present day and Last Glacial Maximum conditions. Ocean Modell., 19 , 125137. doi:10.1016/j.ocemod.2007.06.009.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and B. Bills, 2007: Tides and the climate: Some speculations. J. Phys. Oceanogr., 37 , 135147.

  • Ó Cofaigh, C., J. A. Dowdeswell, and C. J. Pudsey, 2001: Late Quaternary iceberg rafting along the Antarctic Peninsula continental rise and in the Weddell and Scotia seas. Quat. Res., 56 , 308321. doi:10.1006/qres.2001.2267.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 1996: Mantle viscosity and ice-age ice sheet topography. Science, 273 , 13591364. doi:10.1126/science.273.5280.1359.

  • Peltier, W. R., 1998: Postglacial variations in the level of the sea: Implications for climate dynamics and solid-earth geophysics. Rev. Geophys., 36 , 603689.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 2004: Global glacial isostasy and the surface of the ice-age earth: The ICE-5G (VM2) Model and GRACE. Annu. Rev. Earth Planet. Sci., 32 , 111149. doi:10.1146/annurev.earth.32.082503.144359.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., and L. P. Solheim, 2004: The climate of the earth at Last Glacial Maximum. Statistical equilibrium state and a mode of internal variability. Quat. Sci. Rev., 23 , 335357. doi:10.1016/j.quascirev.2003.07.003.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., and R. G. Fairbanks, 2006: Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat. Sci. Rev., 25 , 33223337. doi:10.1016/j.quascirev.2006.04.010.

    • Search Google Scholar
    • Export Citation
  • Platzman, G. W., 1984: Normal modes of the World Ocean. Part IV: Synthesis of diurnal and semidiurnal tides. J. Phys. Oceanogr., 14 , 15321550.

    • Search Google Scholar
    • Export Citation
  • Platzman, G. W., G. A. Curtis, K. S. Hansen, and R. D. Slater, 1981: Normal modes of the World Ocean. Part II: Description of modes in the period range 8 to 80 hours. J. Phys. Oceanogr., 11 , 579603.

    • Search Google Scholar
    • Export Citation
  • Robertson, R., L. Padman, and G. D. Egbert, 1998: Tides in the Weddell Sea. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, S. S. Jacobs and R. F. Weiss, Eds., Antarctic Research Series, Vol. 75, Amer. Geophys. Union, 341–359.

    • Search Google Scholar
    • Export Citation
  • Sakai, K., and W. R. Peltier, 1998: Deglaciation-induced climate variability: An explicit model of the glacial-interglacial transition that simulates both the Bolling/Allerod and Younger-Dryas events. J. Meteor. Soc. Japan, 76 , 10291044.

    • Search Google Scholar
    • Export Citation
  • Schoof, C., 2007: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. J. Geophys. Res., 112 , F03S28. doi:10.1029/2006JF000664.

    • Search Google Scholar
    • Export Citation
  • Shennan, I., and B. Horton, 2002: Holocene land- and sea-level changes in Great Britain. J. Quat. Sci., 17 , 511526. doi:10.1002/jqs.710.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004: Internal wave generation in a global baroclinic tide model. Deep-Sea Res., 51 , 30433068.

    • Search Google Scholar
    • Export Citation
  • Tarasov, L., and W. R. Peltier, 2004: A geophysically constrained large ensemble analysis of the deglacial history of the North American ice-sheet complex. Quat. Sci. Rev., 23 , 359388. doi:10.1016/j.quascirev.2003.08.004.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1920: Tidal friction in the Irish Sea. Phil. Trans. Roy. Soc. London, 220 , 133.

  • Taylor, G. I., 1921: Tidal oscillations in gulfs and rectangular basins. Proc. London Math. Soc., 20 , 148181.

  • Thomas, M., and J. Sündermann, 1999: Tides and tidal torques of the world ocean since the last glacial maximum. J. Geophys. Res., 104 , 31593183.

    • Search Google Scholar
    • Export Citation
  • Uehara, K., 2005: Changes of ocean tides along Asian coasts caused by the post glacial sea-level change. Mega-Deltas of Asia: Geological Evolution and Human Impact, Z. Chen, Y. Saito, and S. L. Goodbred Jr., Eds., China Ocean Press, 227–232.

    • Search Google Scholar
    • Export Citation
  • Uehara, K., J. D. Scourse, K. J. Horsburgh, K. Lambeck, and A. P. Purcell, 2006: Tidal evolution of the northwest European shelf seas from the Last Glacial Maximum to the present. J. Geophys. Res., 111 , C09025. doi:10.1029/2006JC003531.

    • Search Google Scholar
    • Export Citation
  • Williams, G., 2000: Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit. Rev. Geophys., 38 , 3759.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2000: Moon, tides and climate. Nature, 405 , 743744.

  • Wunsch, C., 2005: Speculations on a schematic theory of the Younger Dryas. J. Mar. Res., 63 , 315333.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 884 375 15
PDF Downloads 277 79 5