Independent Component Analysis of Climate Data: A New Look at EOF Rotation

A. Hannachi Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia

Search for other papers by A. Hannachi in
Current site
Google Scholar
PubMed
Close
,
S. Unkel School of Mathematics, Computing and Technology, The Open University, Milton Keynes, United Kingdom

Search for other papers by S. Unkel in
Current site
Google Scholar
PubMed
Close
,
N. T. Trendafilov School of Mathematics, Computing and Technology, The Open University, Milton Keynes, United Kingdom

Search for other papers by N. T. Trendafilov in
Current site
Google Scholar
PubMed
Close
, and
I. T. Jolliffe School of Engineering, Computing, and Mathematics, University of Exeter, Exeter, United Kingdom

Search for other papers by I. T. Jolliffe in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The complexity inherent in climate data makes it necessary to introduce more than one statistical tool to the researcher to gain insight into the climate system. Empirical orthogonal function (EOF) analysis is one of the most widely used methods to analyze weather/climate modes of variability and to reduce the dimensionality of the system. Simple structure rotation of EOFs can enhance interpretability of the obtained patterns but cannot provide anything more than temporal uncorrelatedness. In this paper, an alternative rotation method based on independent component analysis (ICA) is considered. The ICA is viewed here as a method of EOF rotation. Starting from an initial EOF solution rather than rotating the loadings toward simplicity, ICA seeks a rotation matrix that maximizes the independence between the components in the time domain. If the underlying climate signals have an independent forcing, one can expect to find loadings with interpretable patterns whose time coefficients have properties that go beyond simple noncorrelation observed in EOFs. The methodology is presented and an application to monthly means sea level pressure (SLP) field is discussed. Among the rotated (to independence) EOFs, the North Atlantic Oscillation (NAO) pattern, an Arctic Oscillation–like pattern, and a Scandinavian-like pattern have been identified. There is the suggestion that the NAO is an intrinsic mode of variability independent of the Pacific.

Corresponding author address: Dr. A. Hannachi, Department of Meteorology, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia. Email: a.hannachi@reading.ac.uk

Abstract

The complexity inherent in climate data makes it necessary to introduce more than one statistical tool to the researcher to gain insight into the climate system. Empirical orthogonal function (EOF) analysis is one of the most widely used methods to analyze weather/climate modes of variability and to reduce the dimensionality of the system. Simple structure rotation of EOFs can enhance interpretability of the obtained patterns but cannot provide anything more than temporal uncorrelatedness. In this paper, an alternative rotation method based on independent component analysis (ICA) is considered. The ICA is viewed here as a method of EOF rotation. Starting from an initial EOF solution rather than rotating the loadings toward simplicity, ICA seeks a rotation matrix that maximizes the independence between the components in the time domain. If the underlying climate signals have an independent forcing, one can expect to find loadings with interpretable patterns whose time coefficients have properties that go beyond simple noncorrelation observed in EOFs. The methodology is presented and an application to monthly means sea level pressure (SLP) field is discussed. Among the rotated (to independence) EOFs, the North Atlantic Oscillation (NAO) pattern, an Arctic Oscillation–like pattern, and a Scandinavian-like pattern have been identified. There is the suggestion that the NAO is an intrinsic mode of variability independent of the Pacific.

Corresponding author address: Dr. A. Hannachi, Department of Meteorology, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia. Email: a.hannachi@reading.ac.uk

Save
  • Aires, F., A. Chédin, and J-P. Nadal, 2000: Independent component analysis of multivariate time series: Application to the tropical SST variability. J. Geophys. Res., 105 , (D13). 1743717455.

    • Search Google Scholar
    • Export Citation
  • Aires, F., W. B. Rossow, and A. Chédin, 2002: Rotation of EOFs by the independent component analysis: Toward a solution of the mixing problem in the decomposition of geophysical time series. J. Atmos. Sci., 59 , 111123.

    • Search Google Scholar
    • Export Citation
  • Ambaum, M. H. P., B. J. Hoskins, and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation? J. Climate, 14 , 34953507.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., D. B. Stephenson, and I. T. Jolliffe, 2009: Spatial weighting and iterative projection methods for EOFs. J. Climate, 22 , 234243.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and H. M. Van den Dool, 1993a: Toward understanding the causes of low-frequency variability: The interannual standard deviation of monthly mean 700-mb height. J. Climate, 6 , 20832102.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and H. M. Van den Dool, 1993b: Atlas of Climatology and Variability of Monthly Mean Northern Hemisphere Sea Level Pressure, 700 mb Geopotential Height, and 1000–700 mb Thickness, 1950–1992. NOAA Atlas 10, 219 pp.

    • Search Google Scholar
    • Export Citation
  • Basak, J., A. Sudarshan, D. Trivedi, and M. S. Santhanam, 2004: Weather data mining using independent component analysis. J. Mach. Learn. Res., 5 , 239253.

    • Search Google Scholar
    • Export Citation
  • Browne, M. W., 2001: An overview of analytic rotation in exploratory factor analysis. Multivariate Behav. Res., 36 , 111150.

  • Cardoso, J-F., 1999: High-order contrasts for independent component analysis. Neural Comput., 11 , 157192.

  • Cardoso, J-F., and A. Souloumiac, 1993: Blind beamforming for non-Gaussian signals. IEE Proc., 140 , 362370.

  • Cover, T. M., and J. A. Thomas, 1991: Elements of Information Theory. John Wiley & Sons, 542 pp.

  • Dommenget, D., 2007: Evaluating EOF modes against a stochastic null hypothesis. Climate Dyn., 28 , 517531.

  • Dommenget, D., and M. Latif, 2002: A cautionary note on the interpretation of EOFs. J. Climate, 15 , 216225.

  • Fodor, I., and C. Kamath, 2003: On the use of independent component analysis to separate meaningful sources in global temperature series. Lawrence Livermore National Laboratory Tech. Rep. [Available online at https://computation.llnl.gov/casc/sapphire/sep_climate/index.html].

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., D. E. Parker, A. W. Colman, and R. Washington, 1999: Large scale modes of ocean surface temperature since the late nineteenth century. Beyond El Niño: Decadal and Interdecadal Climate Variability, A. Navarra, Ed., Springer, 73–102.

    • Search Google Scholar
    • Export Citation
  • Friedman, J. H., 1987: Exploratory projection pursuit. J. Amer. Stat. Assoc., 82 , 249266.

  • Friedman, J. H., and J. W. Tukey, 1974: A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput., C-23 , 881890.

    • Search Google Scholar
    • Export Citation
  • Fukuoka, A., 1951: A study of 10-day forecast (a synthetic report). Geophys. Mag., 22 , 177218.

  • Golub, G. H., and C. F. van Loan, 1996: Matrix Computations. The John Hopkins University Press, 694 pp.

  • Hannachi, A., 2007a: Pattern hunting in climate: A new method for finding trends in gridded climate data. Int. J. Climatol., 27 , 115.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., 2007b: Tropospheric planetary wave dynamics and mixture modeling: Two preferred regimes and a regime shift. J. Atmos. Sci., 64 , 35213541.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., I. T. Jolliffe, D. B. Stephenson, and N. T. Trendafilov, 2006: In search of simple structures in climate: Simplifying EOFs. Int. J. Climatol., 26 , 728.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., I. T. Jolliffe, and D. B. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27 , 11191152.

    • Search Google Scholar
    • Export Citation
  • Harman, H. H., 1976: Modern Factor Analysis. 3rd ed. University of Chicago Press, 487 pp.

  • Hastie, T., R. Tibshirani, and J. H. Friedman, 2001: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 533 pp.

    • Search Google Scholar
    • Export Citation
  • Holzer, M., 1996: Asymmetric geopotential height fluctuations from symmetric winds. J. Atmos. Sci., 53 , 13611379.

  • Horel, J. D., 1981: A rotated principal component analysis of the interannual variability of the Northern Hemisphere 500 mb height field. Mon. Wea. Rev., 109 , 20802092.

    • Search Google Scholar
    • Export Citation
  • Hyvärinen, A., and E. Oja, 2000: Independent component analysis: Algorithms and applications. Neural Networks, 13 , 411430.

  • Hyvärinen, A., J. Karhunen, and E. Oja, 2001: Independent Component Analysis. John Wiley & Sons, 481 pp.

  • Itoh, H., 2002: True versus apparent Arctic Oscillation. Geophys. Res. Lett., 29 , 1268. doi:10.1029/2001GL013978.

  • Jennrich, R. I., 2001: A simple general procedure for orthogonal rotation. Psychometrika, 66 , 289306.

  • Jennrich, R. I., and N. T. Trendafilov, 2005: Independent component analysis as a rotation method: A very different solution to Thurstone’s box problem. Br. J. Math. Stat. Psychol., 58 , 199208.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., 2002: Principal Component Analysis. 2nd ed. Springer, 487 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kano, Y., Y. Miyamoto, and S. Shimizu, 2003: Factor rotation and ICA. Proc. Fourth Int. Symp. on Independent Component Analysis and Blind Source Separation, Nara, Japan, Osaka University, 101–105.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Lee, T-W., 1998: Independent Component Analysis: Theory and Applications. Kluwer Academic, 210 pp.

  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. Department of Meteorology, MIT Statistical Forecast Project Rep. 1, 49 pp.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1976: Estimates of the natural variability of time-averaged sea level pressure. Mon. Wea. Rev., 104 , 942952.

  • Mooijaart, A., 1985: Factor analysis for non-normal variables. Psychometrika, 50 , 323342.

  • Mori, A., N. Kawasaki, K. Yamazaki, M. Honda, and H. Nakamura, 2006: A reexamination of the Northern Hemisphere sea level pressure variability by the independent component analysis. SOLA, 2 , 58.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1947: Statistically homogeneous fields on a sphere. Usp. Mat. Nauk, 2 , 196198.

  • Obukhov, A. M., 1960: The statistically orthogonal expansion of empirical functions. Bull. Acad. Sci. USSR, Geophys. Ser., 1 , 288291.

    • Search Google Scholar
    • Export Citation
  • Pawitan, Y., 2001: In All Likelihood: Statistical Modelling and Inference Using Likelihood. Clarendon, 528 pp.

  • Philippon, N., L. Jarlan, N. Martiny, P. Camberlin, and E. Mougin, 2007: Characterization of the interannual and intraseasonal variability of West African vegetation between 1982 and 2002 by means of NOAA AVHRR NDVI data. J. Climate, 20 , 12021218.

    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1981: Obliquely rotated principal components: An improved meteorological map typing technique. J. Appl. Meteor., 20 , 11451159.

    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. Int. J. Climatol., 6 , 293335.

  • Richman, M. B., 1987: Rotation of principal components: A reply. Int. J. Climatol., 7 , 511520.

  • Rodgers, J. L., A. Nicewander, and L. Toothaker, 1984: Linearly independent, orhogonal, and uncorrelated variables. Amer. Stat., 38 , 133134.

    • Search Google Scholar
    • Export Citation
  • Stuart, A., and J. K. Ord, 1994: Distribution Theory. Vol. 1, Kendall’s Advanced Theory of Statistics. 6th ed. John Wiley & Sons, 704 pp.

    • Search Google Scholar
    • Export Citation
  • Sura, P., M. Newman, C. Penland, and P. Sardeshmukh, 2005: Multiplicative noise and non-Gaussianity: A paradigm for atmospheric regimes? J. Atmos. Sci., 62 , 13911409.

    • Search Google Scholar
    • Export Citation
  • Thiébaux, H. J., and F. W. Zwiers, 1984: The interpretation and estimation of effective sample size. J. Climate Appl. Meteor., 23 , 800811.

    • Search Google Scholar
    • Export Citation
  • Thurstone, L. L., 1947: Multiple Factor Analysis: A Development and Expansion of the Vectors of Mind. Chicago University Press, 535 pp.

  • Trendafilov, N. T., 2006: Dynamical system approach to multivariate data analysis. J. Comput. Graph. Stat., 15 , 628650.

  • Vallis, G. K., E. P. Gerber, P. J. Kushner, and B. A. Cash, 2004: A mechanism and simple dynamical model of the North Atlantic Oscillation and annular modes. J. Atmos. Sci., 61 , 264280.

    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., S. Saha, and A. Johansson, 2000: Empirical orthogonal teleconnections. J. Climate, 13 , 14211435.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1044 401 20
PDF Downloads 739 156 11