African Easterly Jet: Structure and Maintenance

Man-Li C. Wu Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Man-Li C. Wu in
Current site
Google Scholar
PubMed
Close
,
Oreste Reale Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Oreste Reale in
Current site
Google Scholar
PubMed
Close
,
Siegfried D. Schubert Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Siegfried D. Schubert in
Current site
Google Scholar
PubMed
Close
,
Max J. Suarez Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Max J. Suarez in
Current site
Google Scholar
PubMed
Close
,
Randy D. Koster Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Randy D. Koster in
Current site
Google Scholar
PubMed
Close
, and
Philip J. Pegion Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Philip J. Pegion in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This article investigates the African easterly jet (AEJ), its structure, and the forcings contributing to its maintenance, critically revisiting previous work that attributed the maintenance of the jet to soil moisture gradients over tropical Africa.

A state-of-the-art global model in a high-end computer framework is used to produce a three-member 73-yr ensemble run forced by observed SST to represent the control run. The AEJ as produced by the control is compared with the representation of the AEJ in the 40-yr ECMWF Re-Analysis (ERA-40) and other observational datasets and found to be very realistic.

Five experiments are then performed, each represented by sets of three-member 22-yr-long (1980–2001) ensemble runs. The goal of the experiments is to investigate the role of meridional soil moisture gradients, different land surface properties, and orography. Unlike previous studies, which have suppressed soil moisture gradients within a highly idealized framework (i.e., the so-called bucket model), terrestrial evaporation control is here achieved with a highly sophisticated land surface treatment and with an extensively tested and complex methodology. The results show that the AEJ is suppressed by a combination of absence of meridional evaporation gradients over Africa and constant vegetation, even if the individual forcings taken separately do not lead to the AEJ disappearance, but only its modification. Moreover, the suppression of orography also leads to a different circulation in which there is no AEJ. This work suggests that it is not just soil moisture gradients but a unique combination of geographical features present only in northern tropical Africa that causes and maintains the jet.

Corresponding author address: Man-Li C. Wu, Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD 20771. Email: man-li.c.wu@nasa.gov

Abstract

This article investigates the African easterly jet (AEJ), its structure, and the forcings contributing to its maintenance, critically revisiting previous work that attributed the maintenance of the jet to soil moisture gradients over tropical Africa.

A state-of-the-art global model in a high-end computer framework is used to produce a three-member 73-yr ensemble run forced by observed SST to represent the control run. The AEJ as produced by the control is compared with the representation of the AEJ in the 40-yr ECMWF Re-Analysis (ERA-40) and other observational datasets and found to be very realistic.

Five experiments are then performed, each represented by sets of three-member 22-yr-long (1980–2001) ensemble runs. The goal of the experiments is to investigate the role of meridional soil moisture gradients, different land surface properties, and orography. Unlike previous studies, which have suppressed soil moisture gradients within a highly idealized framework (i.e., the so-called bucket model), terrestrial evaporation control is here achieved with a highly sophisticated land surface treatment and with an extensively tested and complex methodology. The results show that the AEJ is suppressed by a combination of absence of meridional evaporation gradients over Africa and constant vegetation, even if the individual forcings taken separately do not lead to the AEJ disappearance, but only its modification. Moreover, the suppression of orography also leads to a different circulation in which there is no AEJ. This work suggests that it is not just soil moisture gradients but a unique combination of geographical features present only in northern tropical Africa that causes and maintains the jet.

Corresponding author address: Man-Li C. Wu, Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD 20771. Email: man-li.c.wu@nasa.gov

Save
  • Arakawa, A., and M. J. Suarez, 1983: Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev., 111 , 3445.

    • Search Google Scholar
    • Export Citation
  • Asnani, G. C., 2005: Tropical Meteorology. Indian Institute of Tropical Meteorology, 2241 pp.

  • Avissar, R., and D. Werth, 2005: Global hydroclimatological teleconnections resulting from tropical deforestation. J. Hydrometeor., 6 , 134145.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., and M. J. Suarez, 2002: Wind stress simulations and the equatorial momentum budget in an AGCM. J. Atmos. Sci., 59 , 30513073.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., P. J. Pegion, S. D. Schubert, and M. J. Suarez, 2000: Atlas of seasonal means simulated by the NSIPP-1 atmospheric GCM. NASA Goddard Space Flight Center, NASA Tech. Memo. 104606, Vol. 17, 194 pp.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29 , 7790.

  • Charney, J., W. J. Quirk, S-h Chow, and J. Kornfield, 1977: A comparative study of the effects of albedo change on drought in semi-arid regions. J. Atmos. Sci., 34 , 13661385.

    • Search Google Scholar
    • Export Citation
  • Chen, T-C., and H. van Loon, 1987: Interannual variation of the tropical easterly jet. Mon. Wea. Rev., 115 , 17391759.

  • Chen, T. H., and Coauthors, 1997: Cabauw experimental results from the Project for Intercomparison of Land-Surface Parameterization Schemes. J. Climate, 10 , 11941215.

    • Search Google Scholar
    • Export Citation
  • Chou, M-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Goddard Space Flight Center, NASA Tech. Memo. 104606, Vol. 3, 85 pp.

    • Search Google Scholar
    • Export Citation
  • Chou, M-D., and M. J. Suarez, 1999: A solar radiation parameterization for use in general circulation models. NASA Goddard Space Flight Center, NASA Tech. Memo. 104606, Vol. 11, 40 pp.

    • Search Google Scholar
    • Export Citation
  • Clark, D. B., C. M. Taylor, and A. J. Thorpe, 2004: Feedback between the land surface and rainfall at convective length scales. J. Hydrometeor., 5 , 625639.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 1999: Generation of the African easterly jet and its role in determining West African precipitation. J. Climate, 12 , 11651184.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and E. K. Vizy, 2006: Coupled model simulations of the West African monsoon system: Twentieth- and twenty-first-century simulations. J. Climate, 19 , 36813703.

    • Search Google Scholar
    • Export Citation
  • Da Silva, R. R., D. Werth, and R. Avissar, 2008: Regional impacts of future land-cover changes on the Amazon basin wet-season climate. J. Climate, 21 , 11531170.

    • Search Google Scholar
    • Export Citation
  • Dhonneur, G., 1971: General circulation and types of weather over western and central Africa. Annex IV, GATE Design, JOC, WMO Rep., 22 pp.

    • Search Google Scholar
    • Export Citation
  • Douville, H., F. Chauvine, and H. Broqua, 2001: Influence of soil moisture on the Asian and African monsoons. Part I: Mean monsoon and daily precipitation. J. Climate, 14 , 23812403.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., E. Shevliakova, P. C. D. Milly, and R. J. Stouffer, 2007: Modeled impact of anthropogenic land cover change on climate. J. Climate, 20 , 36213634.

    • Search Google Scholar
    • Export Citation
  • Foland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures. Nature, 320 , 602607.

  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302 , 10271030. doi:10.1126/science.1089357.

    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., and K. Cook, 2005: Influence of surface processes over Africa on the Atlantic marine ITCZ and South American precipitation. J. Climate, 18 , 49935010.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., G. N. Kiladis, and C. D. Thorncroft, 2006: Three-dimensional structure and dynamics of African easterly waves. Part II: Dynamical modes. J. Atmos. Sci., 63 , 22312245.

    • Search Google Scholar
    • Export Citation
  • Hamilton, R. A., and J. W. Archibold, 1945: Meteorology of Nigeria and adjacent territories. Quart. J. Roy. Meteor. Soc., 71 , 230265.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., 1977: Structure and dynamics of a tropical squall-line system observed during GATE. Mon. Wea. Rev., 105 , 15401567.

  • Hsieh, J-S., and K. Cook, 2005: Generation of African easterly wave disturbances: Relationship to the African easterly jet. Mon. Wea. Rev., 133 , 13111327.

    • Search Google Scholar
    • Export Citation
  • Hsieh, J-S., and K. Cook, 2007: A study of the energetics of African easterly waves using a regional climate model. J. Atmos. Sci., 64 , 421440.

    • Search Google Scholar
    • Export Citation
  • Hsieh, J-S., and K. Cook, 2008: On the instability of the African easterly jet and the generation of African waves: Reversal of the potential vorticity gradient. J. Atmos. Sci., 65 , 21302151.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63 , 22122230.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res., 97 , 26972715.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1995: Relative contributions of land and ocean processes to precipitation variability. J. Geophys. Res., 100 , (D7). 1377513790.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1996: Energy and water balance calculations in the Mosaic LSM. NASA Goddard Space Flight Center, NASA Tech. Memo. 104606, Vol. 9, 59 pp.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, and M. Heiser, 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1 , 2646.

    • Search Google Scholar
    • Export Citation
  • Louis, J., M. Tiedtke, and J. Geleyn, 1982: A short history of the PBL parametrization at ECMWF. Proc. ECMWF Workshop on Planetary Boundary Layer Parametrization, Reading, United Kingdom, ECMWF, 59–80.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 1997: An analysis of the ENSO signal in the tropical Atlantic and western Indian Ocean. Int. J. Climatol., 17 , 345375.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and J. Kim, 1997: The relationship of the ENSO to African rainfall. Int. J. Climatol., 17 , 117135.

  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85 , 369432.

  • Parker, D. J., and Coauthors, 2008: The AMMA radiosonde program and its implications for the future of atmospheric monitoring over Africa. Bull. Amer. Meteor. Soc., 89 , 10151027.

    • Search Google Scholar
    • Export Citation
  • Pegion, P. J., S. D. Schubert, and M. J. Suarez, 2000: An assessment of the predictability of northern winter seasonal means with the NSIPP 1 AGCM. NASA Goddard Space Flight Center, NASA Tech. Memo. 104606, Vol. 18, 110 pp.

    • Search Google Scholar
    • Export Citation
  • Reale, O., and P. Dirmeyer, 2002: Modeling the effect of land surface evaporation variability on precipitation variability. Part I: General response. J. Hydrometeor., 3 , 433450.

    • Search Google Scholar
    • Export Citation
  • Reale, O., P. Dirmeyer, and A. Schlosser, 2002: Modeling the effect of land surface evaporation variability on precipitation variability. Part II: Time- and space-scale structure. J. Hydrometeor., 3 , 451466.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J-L., C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and J. Polcher, 2006: African Monsoon Multidisciplinary Analysis: An international research project and field campaign. Bull. Amer. Meteor. Soc., 87 , 17391746.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, M. A. Kistler, and A. Kumer, 2002: Predictability of zonal means during boreal summer. J. Climate, 15 , 420434.

    • Search Google Scholar
    • Export Citation
  • Semazzi, F. H. M., B. Burns, N-H. Lin, and J-K. Schemm, 1996: A GCM study of the teleconnections between the continental climate of Africa and global sea surface temperature anomalies. J. Climate, 9 , 24802497.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and L. L. Takacs, 1995: Documentation of the Arries-GEOS dynamical core: Version 2. NASA Goddard Space Flight Center, NASA Tech. Memo. 104606, Vol. 5, 45 pp.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., E. F. Lambin, N. Stephenne, R. J. Hardling, and R. L. H. Essey, 2002: The influence of land use change on climate in the Sahel. J. Climate, 15 , 36153629.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and M. Blackburn, 1999: Maintenance of the African easterly jet. Quart. J. Roy. Meteor. Soc., 125 , 763786.

  • Thorncroft, C. D., and Coauthors, 2003: The JET2000 Project: Aircraft observations of the African easterly jet and African easterly waves. Bull. Amer. Meteor. Soc., 84 , 337351.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., N. M. J. Hall, and G. N. Kiladis, 2008: Three-dimensional structure and dynamics of African easterly waves. Part III: Genesis. J. Atmos. Sci., 65 , 35963607.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., C. Cardinali, J-J. Morcrette, and M. Rodwell, 2005: Influence of aerosol climatology on forecasts of the African easterly jet. Geophys. Res. Lett., 32 , L10801. doi:10.1029/2004GL022189.

    • Search Google Scholar
    • Export Citation
  • Tucker, C., H. D. Dregne, and W. W. Newcomb, 1991: Expansion and contraction of the Sahara desert from 1980 to 1990. Science, 253 , 299300. doi:10.1126/science.253.5017.299.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Vizy, E. K., and K. H. Cook, 2001: Mechanisms by which Gulf of Guinea and eastern North Atlantic sea surface temperature anomalies can influence African rainfall. J. Climate, 14 , 795821.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., and Coauthors, 1998: The Project for the Intercomparison of Land-Surface Parameterization Schemes (PILPS) phase 2(c) Red–Arkansas River basin experiment. 1: Experiment description and summary intercomparisons. Global Planet. Change, 19 , 115135.

    • Search Google Scholar
    • Export Citation
  • Wu, C. M-L., S. Schubert, M. J. Suarez, and P. J. Pegion, 2006: Seasonal and meridional propagation of the MJO. J. Climate, 19 , 19011921.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., and J. Shukla, 1993: The influence of land surface properties on Sahel climate. Part 1: Desertification. J. Climate, 6 , 22322245.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., and J. D. Neelin, 2000: The role of vegetation–climate interaction and interannual variability in shaping the African savanna. J. Climate, 13 , 26652670.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and C. Gautier, 1978: Mesoscale events within a GATE tropical depression. Mon. Wea. Rev., 106 , 789805.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1769 786 186
PDF Downloads 1004 238 16