Evaluation of Hydrometeor Occurrence Profiles in the Multiscale Modeling Framework Climate Model Using Atmospheric Classification

Roger Marchand Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington

Search for other papers by Roger Marchand in
Current site
Google Scholar
PubMed
Close
,
Nathaniel Beagley Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Nathaniel Beagley in
Current site
Google Scholar
PubMed
Close
, and
Thomas P. Ackerman Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington

Search for other papers by Thomas P. Ackerman in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Vertical profiles of hydrometeor occurrence from the multiscale modeling framework (MMF) climate model are compared with profiles observed by a vertically pointing millimeter wavelength cloud radar (located in the U.S. southern Great Plains) as a function of the large-scale atmospheric state. The atmospheric state is determined by classifying (or clustering) the large-scale (synoptic) fields produced by the MMF and a numerical weather prediction model using a neural network approach. The comparison shows that for cold-frontal and post-cold-frontal conditions the MMF produces profiles of hydrometeor occurrence that compare favorably with radar observations, while for warm-frontal conditions the model tends to produce hydrometeor fractions that are too large with too much cloud (nonprecipitating hydrometeors) above 7 km and too much precipitating hydrometeor coverage below 7 km. It is also found that the MMF has difficulty capturing the formation of low clouds and that, for all atmospheric states that occur during June, July, and August, the MMF produces too much high and thin cloud, especially above 10 km.

Corresponding author address: Dr. Roger Marchand, Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Box 355672, 3737 Brooklyn Ave. NE, Seattle, WA 98195. Email: rojmarch@u.washington.edu

Abstract

Vertical profiles of hydrometeor occurrence from the multiscale modeling framework (MMF) climate model are compared with profiles observed by a vertically pointing millimeter wavelength cloud radar (located in the U.S. southern Great Plains) as a function of the large-scale atmospheric state. The atmospheric state is determined by classifying (or clustering) the large-scale (synoptic) fields produced by the MMF and a numerical weather prediction model using a neural network approach. The comparison shows that for cold-frontal and post-cold-frontal conditions the MMF produces profiles of hydrometeor occurrence that compare favorably with radar observations, while for warm-frontal conditions the model tends to produce hydrometeor fractions that are too large with too much cloud (nonprecipitating hydrometeors) above 7 km and too much precipitating hydrometeor coverage below 7 km. It is also found that the MMF has difficulty capturing the formation of low clouds and that, for all atmospheric states that occur during June, July, and August, the MMF produces too much high and thin cloud, especially above 10 km.

Corresponding author address: Dr. Roger Marchand, Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Box 355672, 3737 Brooklyn Ave. NE, Seattle, WA 98195. Email: rojmarch@u.washington.edu

Save
  • Benjamin, S. G., K. Brewster, R. Brummer, B. F. Jewett, T. W. Schlatter, T. L. Smith, and P. A. Stamus, 1991: An isentropic three hourly data assimilation system using ACARS aircraft observations. Mon. Wea. Rev., 119 , 888–906.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., J. M. Brown, K. J. Brundage, D. Devenyi, B. E. Schwartz, T. G. Smirnova, T. L. Smith, and F-J. Wang, 1996: Recent upgrades to MAPS/RUC. NOAA Forecast System Laboratory Forum, 33 pp.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32 , L20806. doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19 , 3445–3482.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. A. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39 , 645–665.

    • Search Google Scholar
    • Export Citation
  • Coleman, J. S. M., and J. C. Rogers, 2007: A synoptic climatology of the central United States and associations with Pacific teleconnection pattern frequency. J. Climate, 20 , 3485–3497.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19 , 2144–2161.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., D. A. Randall, and M. Khairoutdinov, 2007: Convective precipitation variability as a tool for general circulation model analysis. J. Climate, 20 , 91–112.

    • Search Google Scholar
    • Export Citation
  • Fereday, D. R., J. R. Knight, A. A. Scalfe, and C. K. Folland, 2008: Cluster analysis of North Atlantic–European circulation types and links with tropical Pacific sea surface temperatures. J. Climate, 21 , 3687–3703.

    • Search Google Scholar
    • Export Citation
  • Gordon, N. D., J. R. Norris, C. P. Weaver, and S. A. Klein, 2005: Cluster analysis of cloud regimes and characteristic dynamics of midlatitude synoptic systems in observations and a model. J. Geophys. Res., 110 , D15S17. doi:10.1029/2004JD005027.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58 , 978–997.

    • Search Google Scholar
    • Export Citation
  • Haykin, S., 1999: Neural Networks: A Comprehensive Foundation. 2nd ed. Prentice Hall Publishers, 842 pp.

  • Haynes, J. M., R. T. Marchand, Z. Luo, A. Bodas-Salcedo, and G. L. Stephens, 2007: A multipurpose radar simulation package: QuickBeam. Bull. Amer. Meteor. Soc., 88 , 1723–1727.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., G. Tselioudis, and T. Hume, 2005: The radiative, cloud, and thermodynamic properties of the major tropical western Pacific cloud regimes. J. Climate, 18 , 1203–1215.

    • Search Google Scholar
    • Export Citation
  • Jung, T., T. N. Palmer, and G. J. Shutts, 2005: Influence of a stochastic parameterization on the frequency of occurrence of North Pacific weather regimes in the ECMWF model. Geophys. Res. Lett., 32 , L23811. doi:10.1029/2005GL024248.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR community climate model: Preliminary results. Geophys. Res. Lett., 28 , 3617–3620.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM Summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60 , 607–625.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., D. A. Randall, and C. DeMott, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci., 62 , 2136–2154.

    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 1995: Self-Organizing Maps. Springer, 501 pp.

  • Lin, W. Y., and M. H. Zhang, 2004: Evaluation of clouds and their radiative effects simulated by the NCAR community atmospheric model against satellite observations. J. Climate, 17 , 3302–3318.

    • Search Google Scholar
    • Export Citation
  • Marchand, R. T., N. Beagley, S. Thompson, T. P. Ackerman, and D. M. Schultz, 2006: A bootstrap technique for testing the relationship between local-scale radar observations of cloud occurrence and large-scale atmospheric fields. J. Atmos. Sci., 63 , 2813–2830.

    • Search Google Scholar
    • Export Citation
  • Marchand, R. T., J. Haynes, G. G. Mace, T. Ackerman, and G. Stephens, 2009: A comparison of simulated cloud radar output from the multiscale modeling framework global climate model with CloudSat cloud radar observations. J. Geophys. Res., 114 , D00A20. doi:10.1029/2008JD009790.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., J. H. Mather, and T. P. Ackerman, 2007: Analysis of tropical radiative heating profiles: A comparison of models and observations. J. Geophys. Res., 112 , D14218. doi:10.1029/2006JD008290.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and C. P. Weaver, 2001: Improved techniques for evaluating GCM cloudiness applied to the NCAR CCM3. J. Climate, 14 , 2540–2550.

    • Search Google Scholar
    • Export Citation
  • Ovtchinnikov, M., T. P. Ackerman, R. T. Marchand, and M. Khairoutdinov, 2006: Evaluation of the multiscale modeling framework using data from the atmospheric radiation measurement program. J. Climate, 19 , 1716–1729.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., M. F. Khairoutdinov, A. Arakawa, and W. W. Grabowski, 2003: Breaking the cloud-parameterization deadlock. Bull. Amer. Meteor. Soc., 84 , 1547–1564.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., G. Tselioudis, A. Polak, and C. Jakob, 2005: Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. Res. Lett., 32 , L21812. doi:10.1029/2005GL024584.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., 2004: Cold fronts with and without prefrontal wind shifts in the central United States. Mon. Wea. Rev., 132 , 2040–2053.

    • Search Google Scholar
    • Export Citation
  • Smyth, P., K. Ide, and M. Ghil, 1999: Multiple regimes in Northern Hemisphere height fields via mixture model clustering. J. Atmos. Sci., 56 , 3704–3723.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., and C. Jakob, 2002: Evaluation of midlatitude cloud properties in a weather and a climate model: Dependence on dynamic regime and spatial resolution. J. Geophys. Res., 107 , 4781. doi:10.1029/2002JD002259.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., Y. Zhang, and W. B. Rossow, 2000: Cloud and radiation variations associated with northern midlatitude low and high sea level pressure regimes. J. Climate, 13 , 312–327.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and M. J. Webb, 2008: A quantitative climate performance assessment of cloud regimes in GCMs. Climate Dyn., 29 , 231–250. doi:10.1007/s00382-007-0232-2.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, J. T. Bacmeister, J. T. Kiehl, I. M. Held, M. Z. Zhao, S. A. Klein, and B. J. Soden, 2006: A comparison of tropical cloud properties and responses in GCMs using mid-tropospheric vertical velocity. Climate Dyn., 27 , 261–279. doi:10.1007/s00382-006-0138-4.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2008: On the diurnal cycle of deep convection, high-level cloud, and upper troposphere water vapor in the multiscale modeling framework. J. Geophys. Res., 113 , D16105. doi:10.1029/2008JD009905.

    • Search Google Scholar
    • Export Citation
  • Zivkovic, M., and J-F. Louis, 1992: A new method for developing cloud specification schemes in general circulation models. Mon. Wea. Rev., 120 , 2928–2941.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 438 246 73
PDF Downloads 173 62 1