Stratocumulus Cloud-Top Height Estimates and Their Climatic Implications

Paquita Zuidema Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida

Search for other papers by Paquita Zuidema in
Current site
Google Scholar
PubMed
Close
,
David Painemal Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida

Search for other papers by David Painemal in
Current site
Google Scholar
PubMed
Close
,
Simon de Szoeke CIRES/University of Colorado, Boulder, Colorado

Search for other papers by Simon de Szoeke in
Current site
Google Scholar
PubMed
Close
, and
Chris Fairall NOAA/Earth Systems Research Laboratory, Boulder, Colorado

Search for other papers by Chris Fairall in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A depth-dependent boundary layer lapse rate was empirically deduced from 156 radiosondes released during six month-long research cruises to the southeast Pacific sampling a variety of stratocumulus conditions. The lapse-rate dependence on boundary layer height is weak, decreasing from a best fit of 7.6 to 7.2 K km−1 as the boundary layer deepens from 800 m to 2 km. Ship-based cloud-base heights up to 800 m correspond well to lifting condensation levels, indicating well-mixed conditions, with cloud bases >800 m often 200–600 m higher than the lifting condensation levels. The lapse rates were combined with Moderate Resolution Imaging Spectrometer 11-μm-derived cloud-top temperatures and satellite microwave-derived sea surface temperatures to estimate stratocumulus cloud-top heights. The October-mean cloud-top height structure of the southeast Pacific was then spatially and diurnally characterized. Coastal shoaling is apparent, but so is a significant along-coast cloud-top height gradient, with a pronounced elevation of the cloud-top heights above the Arica Bight at ∼20°S. Diurnal cloud-top height variations (inferred from irregular 4-times-daily sampling) can locally reach 250 m in amplitude, and they can help to visualize offshore propagation of free-tropospheric vertical motions. A shallow boundary layer associated with the Chilean coastal jet expands to its north and west in the afternoon. Cloud-top heights above the Arica Bight region are depressed in the afternoon, which may mean that increased subsidence from sensible heating of the Andes dominates an afternoon increase in convergence/upward motion at the exit of the Chilean coastal jet. In the southeast Atlantic during October, the stratocumulus cloud-top heights are typically lower than those in the southeast Pacific. A coastal jet region can also be identified through its low cloud-top heights. Coastal shoaling of the South Atlantic stratocumulus region is mostly uniform with latitude, in keeping with the more linear Namibian/Angolan coastline. The southeast Atlantic shallow cloudy boundary layer extends farther offshore than in the southeast Pacific, particularly at 15°S.

Corresponding author address: Paquita Zuidema, RSMAS/MPO, 4600 Rickenbacker Cswy., Miami, FL 33149. Email: pzuidema@rsmas.miami.edu

Abstract

A depth-dependent boundary layer lapse rate was empirically deduced from 156 radiosondes released during six month-long research cruises to the southeast Pacific sampling a variety of stratocumulus conditions. The lapse-rate dependence on boundary layer height is weak, decreasing from a best fit of 7.6 to 7.2 K km−1 as the boundary layer deepens from 800 m to 2 km. Ship-based cloud-base heights up to 800 m correspond well to lifting condensation levels, indicating well-mixed conditions, with cloud bases >800 m often 200–600 m higher than the lifting condensation levels. The lapse rates were combined with Moderate Resolution Imaging Spectrometer 11-μm-derived cloud-top temperatures and satellite microwave-derived sea surface temperatures to estimate stratocumulus cloud-top heights. The October-mean cloud-top height structure of the southeast Pacific was then spatially and diurnally characterized. Coastal shoaling is apparent, but so is a significant along-coast cloud-top height gradient, with a pronounced elevation of the cloud-top heights above the Arica Bight at ∼20°S. Diurnal cloud-top height variations (inferred from irregular 4-times-daily sampling) can locally reach 250 m in amplitude, and they can help to visualize offshore propagation of free-tropospheric vertical motions. A shallow boundary layer associated with the Chilean coastal jet expands to its north and west in the afternoon. Cloud-top heights above the Arica Bight region are depressed in the afternoon, which may mean that increased subsidence from sensible heating of the Andes dominates an afternoon increase in convergence/upward motion at the exit of the Chilean coastal jet. In the southeast Atlantic during October, the stratocumulus cloud-top heights are typically lower than those in the southeast Pacific. A coastal jet region can also be identified through its low cloud-top heights. Coastal shoaling of the South Atlantic stratocumulus region is mostly uniform with latitude, in keeping with the more linear Namibian/Angolan coastline. The southeast Atlantic shallow cloudy boundary layer extends farther offshore than in the southeast Pacific, particularly at 15°S.

Corresponding author address: Paquita Zuidema, RSMAS/MPO, 4600 Rickenbacker Cswy., Miami, FL 33149. Email: pzuidema@rsmas.miami.edu

Save
  • Ahlgrimm, M., and D. Randall, 2006: Diagnosing monthly mean boundary layer properties from reanalysis data using a bulk boundary layer model. J. Atmos. Sci., 63 , 9981012.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and Harshvardhan, 2007: Correction to “Global assessment of marine boundary layer cloud droplet number concentration from satellite.”. J. Geophys. Res., 112 , D16302. doi:10.1029/2007JD008841.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., P. Minnis, W. Ridgway, and D. F. Young, 1992: Integration of satellite and surface data using a radiative-convective oceanic boundary-layer model. J. Appl. Meteor., 31 , 340350.

    • Search Google Scholar
    • Export Citation
  • Brest, C. L., W. B. Rossow, and M. D. Roiter, 1997: Update of radiance calibrations for ISCCP. J. Atmos. Oceanic Technol., 14 , 10911109.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85 , 967977.

  • Davidson, K. L., C. W. Fairall, P. Jones-Boyle, and G. E. Schacher, 1984: Verification of an atmospheric mixed-layer model for a coastal region. J. Climate Appl. Meteor., 23 , 617683.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S., C. W. Fairall, and S. Pezoa, 2009: Ship observations coasting South America in the tropical Pacific Ocean. J. Climate, 22 , 458464.

    • Search Google Scholar
    • Export Citation
  • Garay, M. J., S. P. de Szoeke, and C. M. Moroney, 2008: Comparison of marine stratocumulus cloud top heights in the southeastern Pacific retrieved from satellites with coincident ship-based observations. J. Geophys. Res., 113 , D18204. doi:10.1029/2008JD009975.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and R. Muñoz, 2004: The diurnal cycle of circulation and cloudiness over the subtropical southeast Pacific: A modeling study. J. Climate, 17 , 16991710.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and R. Muñoz, 2005: The low-level jet off the west coast of subtropical South America: Structure and variability. Mon. Wea. Rev., 133 , 22462261.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and M. Falvey, 2008: The coastal winds off western subtropical South America in future climate scenarios. Int. J. Climatol., 29 , 543554. doi:10.1002/joc.1716.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., J. Rutllant, J. Quintana, J. Carrasco, and P. Minnis, 2001: CIMAR-5: A snapshot of the lower troposphere over the subtropical southeast Pacific. Bull. Amer. Meteor. Soc., 82 , 21932207.

    • Search Google Scholar
    • Export Citation
  • Genkova, I., G. Seiz, P. Zuidema, G. Zhao, and L. D. Girolamo, 2007: Cloud top height comparisons from ASTER, MISR, and MODIS for trade wind cumuli. Remote Sens. Environ., 107 , 211222.

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., F. J. Wentz, C. A. Mears, and D. K. Smith, 2004: In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures. J. Geophys. Res., 109 , C04021. doi:10.1029/2003JC002092.

    • Search Google Scholar
    • Export Citation
  • Hannay, C., D. Williamson, J. Hack, J. Kiehl, J. Olson, S. Klein, C. Bretherton, and M. Kohler, 2009: Evaluation of forecasted simulated southeast Pacific stratocumulus in the NCAR, GFDL, and ECMWF models. J. Climate, 22 , 28712889.

    • Search Google Scholar
    • Export Citation
  • Harshvardhan, G. Zhao, L. Di Girolamo, and R. N. Green, 2009: Satellite-observed location of stratocumulus cloud-top heights in the presence of strong inversions. IEEE Trans. Geosci. Remote Sens., 47 , 14211428. doi:10.1109/TGRS.2008.2005406.

    • Search Google Scholar
    • Export Citation
  • Holz, R. E., S. A. Ackerman, F. W. Nagle, R. Frey, S. Dutcher, R. E. Kuehn, M. A. Vaughan, and B. Baum, 2008: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 113 , D00A19. doi:10.1029/2008JD009837.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41 , 442458.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15871606.

  • Kollias, P., C. W. Fairall, P. Zuidema, J. Tomlinson, and G. A. Wick, 2004: Observations of marine stratocumulus in the SE Pacific during the PACS 2003 cruise. Geophys. Res. Lett., 31 , L22110. doi:10.1029/2004GL020751.

    • Search Google Scholar
    • Export Citation
  • Leon, D. C., Z. Wang, and D. Liu, 2008: Climatology of drizzle in marine boundary layer clouds based on 1 year of data from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). J. Geophys. Res., 113 , D00A14. doi:10.1029/2008JD009835.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., R. A. Frey, B. A. Baum, and H. Zhang, 2006: Cloud top properties and cloud phase algorithm theoretical basis document. MODIS Doc. MOD06CT/MYD06CT-ATBD-C005, 56 pp. [Available online at http://modis-atmos.gsfc.nasa.gov/_docs/MOD06CT:MYD06CT_ATBD_C005.pdf].

    • Search Google Scholar
    • Export Citation
  • Minnis, P., P. Heck, D. Young, C. Fairall, and J. B. Snider, 1992: Stratocumulus cloud properties from simultaneous satellite and island-based instrumentation during FIRE. J. Appl. Meteor., 31 , 317339.

    • Search Google Scholar
    • Export Citation
  • Muñoz, R. C., 2008: Diurnal cycle of surface winds over the subtropical southeast Pacific. J. Geophys. Res., 113 , D13107. doi:10.1029/2008JD009957.

    • Search Google Scholar
    • Export Citation
  • Muñoz, R. C., and R. D. Garreaud, 2005: Dynamics of the low-level jet off the west coast of subtropical South America. Mon. Wea. Rev., 133 , 36613677.

    • Search Google Scholar
    • Export Citation
  • O’Dell, C. W., F. J. Wentz, and R. Bennartz, 2008: Cloud liquid water path from satellite-based passive microwave observations: A new climatology over the global oceans. J. Climate, 21 , 17211739.

    • Search Google Scholar
    • Export Citation
  • Richter, I., and C. R. Mechoso, 2004: Orographic influences on the annual cycle of Namibian stratocumulus clouds. Geophys. Res. Lett., 31 , L24108. doi:10.1029/2004GL020814.

    • Search Google Scholar
    • Export Citation
  • Richter, I., and C. R. Mechoso, 2006: Orographic influences on subtropical stratocumulus. J. Atmos. Sci., 63 , 25852601.

  • Rozendaal, M. A., C. B. Leovy, and S. A. Klein, 1995: An observational study of diurnal variations of the marine stratiform clouds. J. Climate, 8 , 17951809.

    • Search Google Scholar
    • Export Citation
  • Rutllant, J. A., H. Fuenzalida, and P. Aceituno, 2003: Climate dynamics along the arid northern coast of Chile: The 1997–1998 Dinamica del Clima de la Región de Antofagasta (DICLIMA) experiment. J. Geophys. Res., 108 , 4538. doi:10.1029/2002JD003357.

    • Search Google Scholar
    • Export Citation
  • Serpetzoglou, E., B. Albrecht, P. Kollias, and C. W. Fairall, 2008: Boundary layer, cloud, and drizzle variability in the southeast Pacific stratocumulus regime. J. Climate, 21 , 61916214.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., S. Bordoni, C. Holloway, V. Savic-Jovcic, Y. Zhang, A. Beljaars, M. Kohler, and S. Krueger, 2007: On the structure of the lower troposphere in the summertime stratocumulus regime of the northeast Pacific. Mon. Wea. Rev., 135 , 9851005.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and D. S. Battisti, 2007: Processes controlling the mean tropical Pacific precipitation pattern. Part II: The SPCZ and the southeast Pacific dry zone. J. Climate, 20 , 56965706.

    • Search Google Scholar
    • Export Citation
  • Várnai, T., and A. Marshak, 2002: Observations of three-dimensional radiative effects that influence MODIS cloud optical thickness retrievals. J. Atmos. Sci., 59 , 16071618.

    • Search Google Scholar
    • Export Citation
  • von Engeln, A., J. Teixeira, J. Wickert, and S. A. Buehler, 2005: Using CHAMP radio occultation data to determine the top altitude of the planetary boundary layer. Geophys. Res. Lett., 32 , L06815. doi:10.1029/2004GL022168.

    • Search Google Scholar
    • Export Citation
  • Wang, J., W. B. Rossow, T. Uttal, and M. Rozendaal, 1999: Variability of cloud vertical structure during ASTEX observed from a combination of rawinsonde, radar, ceilometer, and satellite. Mon. Wea. Rev., 127 , 24842502.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., S-P. Xie, H. Xu, and B. Wang, 2004: Regional model simulations of marine boundary layer clouds over the southeast Pacific off South America. Part I: Control experiment. Mon. Wea. Rev., 132 , 274296.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for SSM/I. J. Geophys. Res., 102 , 87038718.

  • Wood, R., and C. S. Bretherton, 2004: Boundary layer depth, entrainment, and decoupling in the cloud-capped subtropical and tropical marine boundary layer. J. Climate, 17 , 35763588.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine boundary layer clouds: The importance of mesoscale cellular convection. J. Climate, 19 , 17481764.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, H. A. Rand, and D. E. Stevens, 1997: Numerical simulations and a conceptual model for the stratocumulus to trade cumulus transition. J. Atmos. Sci., 54 , 168182.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., and Coauthors, 2007: A single-column model intercomparison of a heavily drizzling stratocumulus-topped boundary layer. J. Geophys. Res., 112 , D24204. doi:10.1029/2007JD008536.

    • Search Google Scholar
    • Export Citation
  • Xu, H., Y. Wang, and S-P. Xie, 2004: Effects of the Andes on eastern Pacific climate: A regional atmospheric model study. J. Climate, 17 , 589602.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and B. Mapes, 2008: Cloud vertical structure observed from space and ship over the Bay of Bengal and eastern tropical Pacific. J. Meteor. Soc. Japan, 86A , 205218.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1361 607 146
PDF Downloads 713 160 16