The Late-Spring Maximum of Rainfall over the U.S. Central Plains and the Role of the Low-Level Jet

Shih-Yu Wang Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Search for other papers by Shih-Yu Wang in
Current site
Google Scholar
PubMed
Close
and
Tsing-Chang Chen Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Search for other papers by Tsing-Chang Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The seasonal rainfall over the U.S. central plains features a late-spring maximum. A spring–fall annual mode revealed from the empirical orthogonal function analysis on rainfall delineates a maximum center over the central plains that coincides with the large late-spring rainfall. This paper examines the large-scale dynamical and hydrological processes in forming the rainfall center. The NCEP–Department of Energy (DOE) reanalysis 2 data reveal that the baroclinic structure of the continental-scale circulation during late spring (May and June) induces a vertically out-of-phase divergent circulation forming strong convergence of water vapor flux over the central plains. Such circulation features generate concentrated convective activity in this region. The upper-level anticyclone development with the North American monsoon in July replaces the late-spring baroclinic structure and, in turn, reduces the convective activity. The Great Plains low-level jet (LLJ) plays a role in the downscaling process that connects the continental-scale circulation to rainfall. The LLJ coupled with approaching baroclinic waves leads to stronger moisture convergence in the central plains than that occurring under the upper-level anticyclone. The former type of the LLJ occurs most frequently in late spring and contributes to more than 60% of the rainfall. During midsummer (July and August), such a coupling is hindered by the well-developed upper-level anticyclone, subsequently decreasing the rainfall.

Corresponding author address: Tsing-Chang (Mike) Chen, Atmospheric Science Program, Department of Geological and Atmospheric Sciences, 3010 Agronomy Hall, Iowa State University, Ames, IA 50011. Email: tmchen@iastate.edu

Abstract

The seasonal rainfall over the U.S. central plains features a late-spring maximum. A spring–fall annual mode revealed from the empirical orthogonal function analysis on rainfall delineates a maximum center over the central plains that coincides with the large late-spring rainfall. This paper examines the large-scale dynamical and hydrological processes in forming the rainfall center. The NCEP–Department of Energy (DOE) reanalysis 2 data reveal that the baroclinic structure of the continental-scale circulation during late spring (May and June) induces a vertically out-of-phase divergent circulation forming strong convergence of water vapor flux over the central plains. Such circulation features generate concentrated convective activity in this region. The upper-level anticyclone development with the North American monsoon in July replaces the late-spring baroclinic structure and, in turn, reduces the convective activity. The Great Plains low-level jet (LLJ) plays a role in the downscaling process that connects the continental-scale circulation to rainfall. The LLJ coupled with approaching baroclinic waves leads to stronger moisture convergence in the central plains than that occurring under the upper-level anticyclone. The former type of the LLJ occurs most frequently in late spring and contributes to more than 60% of the rainfall. During midsummer (July and August), such a coupling is hindered by the well-developed upper-level anticyclone, subsequently decreasing the rainfall.

Corresponding author address: Tsing-Chang (Mike) Chen, Atmospheric Science Program, Department of Geological and Atmospheric Sciences, 3010 Agronomy Hall, Iowa State University, Ames, IA 50011. Email: tmchen@iastate.edu

Save
  • Ahijevych, D. A., C. A. Davis, R. E. Carbone, and J. D. Tuttle, 2004: Initiation of precipitation episodes relative to elevated terrain. J. Atmos. Sci., 61 , 27632769.

    • Search Google Scholar
    • Export Citation
  • Anderson, C. J., and R. W. Arritt, 2001: Representation of summertime low-level jets in the central United States by the NCEP–NCAR reanalysis. J. Climate, 14 , 234247.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., T. L. Mote, P. G. Dixon, S. L. Trotter, E. J. Powell, J. D. Durkee, and A. J. Grundstein, 2003: Distribution of mesoscale convective complex rainfall in the United States. Mon. Wea. Rev., 131 , 30033017.

    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., and F. Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9 , 116135.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. H. Berbery, 1998: Evolution of the North American monsoon system. J. Climate, 11 , 22382257.

  • Beebe, R. C., and F. C. Bates, 1955: A mechanism for assisting in the release of convective instability. Mon. Wea. Rev., 83 , 110.

  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38 , 283290.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1966: Case study of thunderstorm activity in relation to the low-level jet. Mon. Wea. Rev., 94 , 167178.

  • Bonner, W. D., 1968: Climatology of the low-level jet. Mon. Wea. Rev., 96 , 833850.

  • Boyle, J. S., 1998: Evaluation of the annual cycle of precipitation over the United States in GCMs: AMIP simulations. J. Climate, 11 , 10411055.

    • Search Google Scholar
    • Export Citation
  • Byerle, L. A., and J. Paegle, 2003: Modulation of the Great Plains low-level jet and moisture transports by orography and large-scale circulations. J. Geophys. Res., 108 , 8611. doi:10.1029/2002JD003005.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59 , 20332056.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 2001: Thunderstorm rainfall in the conterminous United States. Bull. Amer. Meteor. Soc., 82 , 19251940.

  • Chen, T-C., 1985: Global water vapor flux and maintenance during FGGE. Mon. Wea. Rev., 113 , 18011819.

  • Chen, T-C., 2003: Maintenance of summer monsoon circulations: A planetary-scale perspective. J. Climate, 16 , 20222037.

  • Chen, T-C., and J. A. Kpaeyeh, 1993: The synoptic-scale environment associated with the low-level jet of the Great Plains. Mon. Wea. Rev., 121 , 416420.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and M. B. Richman, 2004: An observational study of derecho-producing convective systems. Wea. Forecasting, 19 , 320337.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., R. J. Kane, and C. R. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25 , 13331345.

    • Search Google Scholar
    • Export Citation
  • Gutowski, W. J., Y. Chen, and Z. Otles, 1997: Atmospheric water vapor transport in NCEP–NCAR reanalyses: Comparison with river discharge in the central United States. Bull. Amer. Meteor. Soc., 78 , 19571969.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., R. S. Schneider, H. E. Brooks, G. S. Forbes, H. B. Bluestein, M. Steinberg, D. Meléndez, and R. M. Dole, 2005: The May 2003 extended tornado outbreak. Bull. Amer. Meteor. Soc., 86 , 531542.

    • Search Google Scholar
    • Export Citation
  • Heddinghaus, T. R., and A. F. Krueger, 1981: Annual and interannual variations in outgoing longwave radiation over the tropics. Mon. Wea. Rev., 109 , 12081218.

    • Search Google Scholar
    • Export Citation
  • Helfand, H. M., and S. D. Schubert, 1995: Climatology of the simulated Great Plains low-level jet and its contribution to the continental moisture budget of the United States. J. Climate, 8 , 784806.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., J. E. Janowiak, and K. Y. Yao, 1996a: A gridded hourly precipitation database for the United States (1963–1995). NCEP/Climate Prediction Center Atlas 10, 47 pp.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., K. C. Mo, and S. D. Schubert, 1996b: The moisture budget of the central United States in spring as evaluated in the NCEP/NCAR and the NASA/DAO reanalyses. Mon. Wea. Rev., 124 , 939962.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, and X. L. Wang, 1997a: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10 , 26002622.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997b: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10 , 481507.

    • Search Google Scholar
    • Export Citation
  • Hoch, J., and P. Markowski, 2005: A climatology of springtime dryline position in the U.S. Great Plains region. J. Climate, 18 , 21322137.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19 , 199205.

  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 535 pp.

  • Horn, L. H., and R. A. Bryson, 1960: Harmonic analysis of the annual march of precipitation over the United States. Ann. Assoc. Amer. Geogr., 50 , 157171.

    • Search Google Scholar
    • Export Citation
  • Hsu, C-P., and J. M. Wallace, 1976: The global distribution of the annual and semiannual cycles in precipitation. Mon. Wea. Rev., 104 , 10931101.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., N-C. Lau, I. M. Held, and J. J. Ploshay, 2007: Mechanisms of the Great Plains low-level let as simulated in an AGCM. J. Atmos. Sci., 64 , 532547.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., 1993: Meteorological conditions associated with bow echo development in convective storms. Wea. Forecasting, 8 , 294299.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2 , 3249.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP/DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kendrew, W. G., 1922: The Climates of the Continents. Clarendon Press, 387 pp.

  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61 , 13741387.

  • Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-alpha scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60 , 115123.

    • Search Google Scholar
    • Export Citation
  • Mitchell, M. J., R. W. Arritt, and K. Labas, 1995: A climatology of the warm season Great Plains low-level jet using wind profiler observations. Wea. Forecasting, 10 , 576591.

    • Search Google Scholar
    • Export Citation
  • Newton, C. W., 1967: Severe convective storms. Advances in Geophysics, Vol. 12, Academic Press, 257–303.

  • Nigam, S., and A. Ruiz-Barradas, 2006: Seasonal hydroclimate variability over North America in global and regional reanalyses and AMIP simulations: Varied representation. J. Climate, 19 , 815837.

    • Search Google Scholar
    • Export Citation
  • Pan, Z., E. S. Takle, M. Segal, and R. Turner, 1996: Influences of model parameterization schemes on the response of rainfall to soil moisture in the central United States. Mon. Wea. Rev., 124 , 17861802.

    • Search Google Scholar
    • Export Citation
  • Pitchford, K. L., and J. London, 1962: The low-level jet as related to nocturnal thunderstorms over Midwest United States. J. Appl. Meteor., 1 , 4347.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1968: Atmospheric water vapor transport and the water balance of North America. Mon. Wea. Rev., 96 , 720734.

  • Richman, M. B., 1986: Rotation of principal components. Int. J. Climatol., 6 , 293335.

  • Roads, J. O., S. C. Chen, A. K. Guetter, and K. P. Georgakakos, 1994: Large-scale aspects of the United States hydrologic cycle. Bull. Amer. Meteor. Soc., 75 , 15891610.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and E. S. Yarosh, 1998: The observed mean annual cycle of moisture budgets over the central United States (1973–92). J. Climate, 11 , 21802190.

    • Search Google Scholar
    • Export Citation
  • Ruane, A. C., and J. O. Roads, 2007: The diurnal cycle of water and energy over the continental United States from three reanalyses. J. Meteor. Soc. Japan, 85A , 117143.

    • Search Google Scholar
    • Export Citation
  • Ruane, A. C., and J. O. Roads, 2008: Dominant balances and exchanges of the atmospheric water cycle in the Reanalysis 2 at diurnal, annual, and intraseasonal time scales. J. Climate, 21 , 39513966.

    • Search Google Scholar
    • Export Citation
  • Schmidt, J. M., and W. R. Cotton, 1989: A high plains squall line associated with severe surface winds. J. Atmos. Sci., 46 , 281302.

  • Schubert, S. D., H. M. Helfand, C-Y. Wu, and W. Min, 1998: Subseasonal variations in warm-season moisture transport and precipitation over the central and eastern United States. J. Climate, 11 , 25302555.

    • Search Google Scholar
    • Export Citation
  • Segal, M., J. Garratt, G. Kallos, and R. Pielke, 1989: The impact of wet soil and canopy temperatures on daytime boundary layer growth. J. Atmos. Sci., 46 , 36733684.

    • Search Google Scholar
    • Export Citation
  • Smull, B. F., and J. A. Augustine, 1993: Multiscale analysis of a mature mesoscale convective complex. Mon. Wea. Rev., 121 , 103132.

  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9 , 16981711.

  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63 , 24372461.

    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and C. A. Davis, 2006: Corridors of warm season precipitation in the central United States. Mon. Wea. Rev., 134 , 22972317.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., 1980: On the role of upper tropospheric jet streaks and leeside cyclogenesis in the development of low-level jets in the Great Plains. Mon. Wea. Rev., 108 , 16891696.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107 , 682703.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103 , 406419.

    • Search Google Scholar
    • Export Citation
  • Wang, S-Y., T-C. Chen, and S. E. Taylor, 2009: Evaluations of NAM forecasts on midtropospheric perturbation-induced convective storms over the U.S. northern plains. Wea. Forecasting, in press.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., J. B. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45 , 19902013.

    • Search Google Scholar
    • Export Citation
  • Weisman, R. A., 1990: An observational study of warm season southern Appalachian lee troughs. Part II: Thunderstorm genesis zones. Mon. Wea. Rev., 118 , 20202041.

    • Search Google Scholar
    • Export Citation
  • Weng, S-P., 2000: A new perspective on the regional hydrologic cycle over North and South America. Ph.D. dissertation, Iowa State University, 153 pp.

  • White, G. H., 1982: An observational study of the Northern Hemisphere extratropical summertime general circulation. J. Atmos. Sci., 39 , 2440.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and G. J. Boer, 1987: A comparison of climates simulated by a general circulation model when run in the annual cycle and perpetual modes. Mon. Wea. Rev., 115 , 26262644.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1148 603 213
PDF Downloads 301 57 7