Intraseasonal Latent Heat Flux Based on Satellite Observations

Semyon A. Grodsky Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Semyon A. Grodsky in
Current site
Google Scholar
PubMed
Close
,
Abderrahim Bentamy Institut Francais pour la Recherche et l’Exploitation de la Mer, Plouzane, France

Search for other papers by Abderrahim Bentamy in
Current site
Google Scholar
PubMed
Close
,
James A. Carton Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by James A. Carton in
Current site
Google Scholar
PubMed
Close
, and
Rachel T. Pinker Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Rachel T. Pinker in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Weekly average satellite-based estimates of latent heat flux (LHTFL) are used to characterize spatial patterns and temporal variability in the intraseasonal band (periods shorter than 3 months). As expected, the major portion of intraseasonal variability of LHTFL is due to winds, but spatial variability of humidity and SST are also important. The strongest intraseasonal variability of LHTFL is observed at the midlatitudes. It weakens toward the equator, reflecting weak variance of intraseasonal winds at low latitudes. It also decreases at high latitudes, reflecting the effect of decreased SST and the related decrease of time-mean humidity difference between heights z = 10 m and z = 0 m. Within the midlatitude belts the intraseasonal variability of LHTFL is locally stronger (up to 50 W m−2) in regions of major SST fronts (like the Gulf Stream and Agulhas). Here it is forced by passing storms and is locally amplified by unstable air over warm SSTs. Although weaker in amplitude (but still significant), intraseasonal variability of LHTFL is observed in the tropical Indian and Pacific Oceans due to wind and humidity perturbations produced by the Madden–Julian oscillations. In this tropical region intraseasonal LHTFL and incoming solar radiation vary out of phase so that evaporation increases just below the convective clusters.

Over much of the interior ocean where the surface heat flux dominates the ocean mixed layer heat budget, intraseasonal SST cools in response to anomalously strong upward intraseasonal LHTFL. This response varies geographically, in part because of geographic variations of mixed layer depth and the resulting variations in thermal inertia. In contrast, in the eastern tropical Pacific and Atlantic cold tongue regions intraseasonal SST and LHTFL are positively correlated. This surprising result occurs because in these equatorial upwelling areas SST is controlled by advection rather than by surface fluxes. Here LHTFL responds to rather than drives SST.

Corresponding author address: Semyon A. Grodsky, Computer and Space Science Building/AOSC, University of Maryland, College Park, College Park, MD 20742. Email: senya@atmos.umd.edu

Abstract

Weekly average satellite-based estimates of latent heat flux (LHTFL) are used to characterize spatial patterns and temporal variability in the intraseasonal band (periods shorter than 3 months). As expected, the major portion of intraseasonal variability of LHTFL is due to winds, but spatial variability of humidity and SST are also important. The strongest intraseasonal variability of LHTFL is observed at the midlatitudes. It weakens toward the equator, reflecting weak variance of intraseasonal winds at low latitudes. It also decreases at high latitudes, reflecting the effect of decreased SST and the related decrease of time-mean humidity difference between heights z = 10 m and z = 0 m. Within the midlatitude belts the intraseasonal variability of LHTFL is locally stronger (up to 50 W m−2) in regions of major SST fronts (like the Gulf Stream and Agulhas). Here it is forced by passing storms and is locally amplified by unstable air over warm SSTs. Although weaker in amplitude (but still significant), intraseasonal variability of LHTFL is observed in the tropical Indian and Pacific Oceans due to wind and humidity perturbations produced by the Madden–Julian oscillations. In this tropical region intraseasonal LHTFL and incoming solar radiation vary out of phase so that evaporation increases just below the convective clusters.

Over much of the interior ocean where the surface heat flux dominates the ocean mixed layer heat budget, intraseasonal SST cools in response to anomalously strong upward intraseasonal LHTFL. This response varies geographically, in part because of geographic variations of mixed layer depth and the resulting variations in thermal inertia. In contrast, in the eastern tropical Pacific and Atlantic cold tongue regions intraseasonal SST and LHTFL are positively correlated. This surprising result occurs because in these equatorial upwelling areas SST is controlled by advection rather than by surface fluxes. Here LHTFL responds to rather than drives SST.

Corresponding author address: Semyon A. Grodsky, Computer and Space Science Building/AOSC, University of Maryland, College Park, College Park, MD 20742. Email: senya@atmos.umd.edu

Save
  • Araligidad, N. M., and E. D. Maloney, 2008: Wind-driven latent heat flux and the intraseasonal oscillation. Geophys. Res. Lett., 35 , L04815. doi:10.1029/2007GL032746.

    • Search Google Scholar
    • Export Citation
  • Beal, R. C., V. N. Kudryavtsev, D. R. Thompson, S. A. Grodsky, D. G. Tilley, V. A. Dulov, and H. C. Graber, 1997: The influence of the marine atmospheric boundary layer on ERS 1 synthetic aperture radar imagery of the Gulf Stream. J. Geophys. Res., 102 , 57995814.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., Y. Quilfen, F. Gohin, N. Grima, M. Lenaour, and J. Servain, 1996: Determination and validation of average wind fields from ERS-1 scatterometer measurements. Global Atmos. Ocean Syst., 4 , 129.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., K. B. Katsaros, A. M. Mestas-Nuñez, W. M. Drennan, E. B. Forde, and H. Roquet, 2003: Satellite estimates of wind speed and latent heat flux over the global oceans. J. Climate, 16 , 637656.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., L-H. Ayina, W. Drennan, K. Katsaros, A. M. Mestas-Nuñez, and R. T. Pinker, 2008: 15 years of ocean surface momentum and heat fluxes from remotely sensed observations. FLUXNEWS, No. 5, World Climate Research Programme, Geneva, Switzerland, 14–16. [Available online at http://sail.msk.ru/newsletter/fluxnews_5_final.pdf].

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., and M. F. Cronin, 2008: Regional weather patterns during anomalous air–sea fluxes at the Kuroshio Extension Observatory (KEO). J. Climate, 21 , 16801697.

    • Search Google Scholar
    • Export Citation
  • Bourlès, B., and Coauthors, 2008: The PIRATA program: History, accomplishments, and future directions. Bull. Amer. Meteor. Soc., 89 , 11111125.

    • Search Google Scholar
    • Export Citation
  • Chou, S-H., E. Nelkin, J. Ardizzone, R. M. Atlas, and C-L. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrievals, version 2 (GSSTF2). J. Climate, 16 , 32563273.

    • Search Google Scholar
    • Export Citation
  • da Silva, A., C. C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 83 pp.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., and M. J. McPhaden, 2004: The 30–70-day oscillations in the tropical Atlantic. Geophys. Res. Lett., 31 , L15205. doi:10.1029/2004GL020023.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., J. A. Carton, C. Provost, J. Servain, J. A. Lorenzzetti, and M. J. McPhaden, 2005: Tropical instability waves at 0°N, 23°W in the Atlantic: A case study using Pilot Research Moored Array in the Tropical Atlantic (PIRATA) mooring data. J. Geophys. Res., 110 , C08010. doi:10.1029/2005JC002941.

    • Search Google Scholar
    • Export Citation
  • Han, W., D. Yuan, W. T. Liu, and D. J. Halkides, 2007: Intraseasonal variability of Indian Ocean sea surface temperature during boreal winter: Madden–Julian oscillation versus submonthly forcing and processes. J. Geophys. Res., 112 , C04001. doi:10.1029/2006JC003791.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Konda, M., N. Imasato, and A. Shibata, 1996: A new method to determine near-sea surface air temperature by using satellite data. J. Geophys. Res., 101 , (C6). 1434914360.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T., D. Oosterhof, and A. Mehta, 1988: Air–sea interaction on the time scale of 30 to 50 days. J. Atmos. Sci., 45 , 13041322.

    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12 , 464482.

  • Liu, H., and R. T. Pinker, 2008: Radiative fluxes from satellites: Focus on aerosols. J. Geophys. Res., 113 , D08208. doi:10.1029/2007JD008736.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., 2002: Progress in scatterometer application. J. Oceanogr., 58 , 121136.

  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air–sea exchanges of heat and water vapor including the molecular constraints at the sea surface. J. Atmos. Sci., 36 , 17221735.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17 , 43684386.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2004: Evolution of the 2002/03 El Niño. Bull. Amer. Meteor. Soc., 85 , 677695.

  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean–Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103 , (C7). 1416914240.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90 , 459480.

    • Search Google Scholar
    • Export Citation
  • Mestas-Nuñez, A. M., A. Bentamy, and K. B. Katsaros, 2006: Seasonal and El Niño variability in weekly satellite evaporation over the global ocean during 1996–98. J. Climate, 19 , 20252035.

    • Search Google Scholar
    • Export Citation
  • Muñoz, E., A. J. Busalacchi, S. Nigam, and A. Ruiz-Barradas, 2008: Winter and summer structure of the Caribbean low-level jet. J. Climate, 21 , 12601276.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44 , 23412348.

    • Search Google Scholar
    • Export Citation
  • Park, S., C. Deser, and M. A. Alexander, 2005: Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans. J. Climate, 18 , 45824599.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., and I. Laszlo, 1992: Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor., 31 , 194211.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, and P. Hacker, 2004: Synoptic-scale air–sea flux forcing in the western North Pacific: Observations and their impact on SST and the mixed layer. J. Phys. Oceanogr., 34 , 21482159.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20 , 54735496.

    • Search Google Scholar
    • Export Citation
  • Rodriguez-Puebla, C., R. T. Pinker, and S. Nigam, 2008: Relationship between downwelling surface shortwave radiative fluxes and sea surface temperature over the tropical Pacific: AMIP II models versus satellite estimates. Ann. Geophys., 26 , 785794.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612287.

  • Shinoda, T., and H. H. Hendon, 1998: Mixed layer modeling of intraseasonal variability in the tropical western Pacific and Indian Oceans. J. Climate, 11 , 26682685.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2 , 14921499.

    • Search Google Scholar
    • Export Citation
  • Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lott, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25 , 823842. doi:10.1002/joc.1166.

    • Search Google Scholar
    • Export Citation
  • Yu, L., R. A. Weller, and B. Sun, 2004: Improving latent and sensible heat flux estimates for the Atlantic Ocean (1988–99) by a synthesis approach. J. Climate, 17 , 373393.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2006: Role of net surface heat flux in seasonal variations of sea surface temperature in the tropical Atlantic Ocean. J. Climate, 19 , 61536169.

    • Search Google Scholar
    • Export Citation
  • Zhang, B., R. T. Pinker, and P. W. Stackhouse, 2007: An empirical orthogonal function iteration approach for obtaining homogeneous radiative fluxes from satellite observations. J. Appl. Meteor. Climatol., 46 , 435444.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and M. J. McPhaden, 2000: Intraseasonal surface cooling in the equatorial western Pacific. J. Climate, 13 , 22612276.

  • Zolina, O., and S. K. Gulev, 2003: Synoptic variability of ocean–atmosphere turbulent fluxes associated with atmospheric cyclones. J. Climate, 16 , 27172734.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 876 468 90
PDF Downloads 291 65 8