Hemispheric-Scale Seasonality of the Southern Annular Mode and Impacts on the Climate of New Zealand

J. Kidston National Institute of Water and Atmospheric Research, and School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand

Search for other papers by J. Kidston in
Current site
Google Scholar
PubMed
Close
,
J. A. Renwick National Institute of Water and Atmospheric Research, Wellington, New Zealand

Search for other papers by J. A. Renwick in
Current site
Google Scholar
PubMed
Close
, and
J. McGregor School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand

Search for other papers by J. McGregor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The seasonality of the southern annular mode (SAM) and the resulting impacts on the climate variability of New Zealand (NZ) are investigated. As with previous studies, during summer the SAM is found to be largely zonally symmetric, whereas during winter it exhibits increased zonal wavenumber 2–3 variability. This is consistent with seasonal variations in the mean state, and the authors argue that the seasonal cycle of near-surface temperature over the Australian continent plays an important role, making the eddy-driven jet, and hence the SAM, more zonally symmetric during summer than winter. During winter, the SAM exhibits little variability over the South Pacific and southeast of Australia. Dynamical reasons for this behavior are discussed.

For the NZ region this seasonality implies that fluctuations in the SAM are associated with a zonal wind speed anomaly during summer but a more meridional wind speed anomaly during winter. This behavior is well captured by temperature and rainfall station data, which serves to corroborate the seasonal changes seen in the large-scale analysis. Moreover, the mode of climate variability that corresponds to a fluctuation of the zonal wind speed is well correlated with the SAM during the summer only and exhibits less variance during the winter. This is consistent with the notion that the seasonality of the SAM significantly impacts modes of climate variability in the region.

Corresponding author address: J. Kidston, National Institute of Water and Atmospheric Research (NIWA), Private Bag 14901, Wellington, New Zealand. Email: j.kidston@niwa.co.nz

Abstract

The seasonality of the southern annular mode (SAM) and the resulting impacts on the climate variability of New Zealand (NZ) are investigated. As with previous studies, during summer the SAM is found to be largely zonally symmetric, whereas during winter it exhibits increased zonal wavenumber 2–3 variability. This is consistent with seasonal variations in the mean state, and the authors argue that the seasonal cycle of near-surface temperature over the Australian continent plays an important role, making the eddy-driven jet, and hence the SAM, more zonally symmetric during summer than winter. During winter, the SAM exhibits little variability over the South Pacific and southeast of Australia. Dynamical reasons for this behavior are discussed.

For the NZ region this seasonality implies that fluctuations in the SAM are associated with a zonal wind speed anomaly during summer but a more meridional wind speed anomaly during winter. This behavior is well captured by temperature and rainfall station data, which serves to corroborate the seasonal changes seen in the large-scale analysis. Moreover, the mode of climate variability that corresponds to a fluctuation of the zonal wind speed is well correlated with the SAM during the summer only and exhibits less variance during the winter. This is consistent with the notion that the seasonality of the SAM significantly impacts modes of climate variability in the region.

Corresponding author address: J. Kidston, National Institute of Water and Atmospheric Research (NIWA), Private Bag 14901, Wellington, New Zealand. Email: j.kidston@niwa.co.nz

Save
  • Arblaster, J. M., and G. A. Meehl, 2006: Contributions of external forcings to southern annular mode trends. J. Climate, 19 , 28962905.

    • Search Google Scholar
    • Export Citation
  • Bals-Elsholz, T. M., E. H. Atallah, L. F. Bosart, T. A. Wasula, M. J. Cempa, and A. R. Lupo, 2001: The wintertime Southern Hemisphere split jet: Structure, variability, and evolution. J. Climate, 14 , 41914215.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., R. L. Fogt, K. I. Hodges, and J. E. Walsh, 2007: A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J. Geophys. Res., 112 , D10111. doi:10.1029/2006JD007859.

    • Search Google Scholar
    • Export Citation
  • Cai, W. J., P. H. Whetton, and D. J. Karoly, 2003: The response of the Antarctic Oscillation to increasing and stabilized atmospheric CO2. J. Climate, 16 , 15251538.

    • Search Google Scholar
    • Export Citation
  • Codron, F., 2005: Relation between annular modes and the mean state: Southern Hemisphere summer. J. Climate, 18 , 320330.

  • Codron, F., 2007: Relations between annular modes and the mean state: Southern Hemisphere winter. J. Atmos. Sci., 64 , 33283339.

  • Gerber, E. P., and G. K. Vallis, 2005: A stochastic model for the spatial structure of annular patterns of variability and the North Atlantic Oscillation. J. Climate, 18 , 21022118.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and G. K. Vallis, 2007: Eddy–zonal flow interactions and the persistence of the zonal index. J. Atmos. Sci., 64 , 32963311.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., T. D. Kell, and P. D. Jones, 2006: Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett., 33 , L23704. doi:10.1029/2006GL027721.

    • Search Google Scholar
    • Export Citation
  • Gong, D. Y., and S. W. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26 , 459462.

  • Haigh, J. D., and H. K. Roscoe, 2006: Solar influences on polar modes of variability. Meteor. Z., 15 , 371378.

  • Hartmann, D. L., 1994: Global Physical Climatology. Vol. 56, International Geophysics, Academic Press, 411 pp.

  • Hartmann, D. L., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55 , 13031315.

  • Hendon, H. H., D. W. J. Thompson, and M. C. Wheeler, 2007: Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J. Climate, 20 , 24522467.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18 , 41084129.

  • Inatsu, M., and B. J. Hoskins, 2004: The zonal asymmetry of the Southern Hemisphere winter storm track. J. Climate, 17 , 48824892.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., R. E. Kistler, and R. W. Reynolds, 1997: NCEP/NCAR reanalysis and the use of satellite data. Adv. Space Res., 91 , 481489.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., 1988: Interannual variations in the Southern Hemisphere circulation. J. Climate, 1 , 11771198.

  • Kidson, J. W., 1999: Principal modes of Southern Hemisphere low-frequency variability obtained from NCEP–NCAR reanalyses. J. Climate, 12 , 28082830.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., 2000: An analysis of New Zealand synoptic types and their use in defining weather regimes. Int. J. Climatol., 20 , 299316.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., and M. R. Sinclair, 1995: The influence of persistent anomalies on Southern Hemisphere storm tracks. J. Climate, 8 , 19381950.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., and I. G. Watterson, 1999: The structure and predictability of the “high-latitude mode” in the CSIRO9 general circulation model. J. Atmos. Sci., 56 , 38593873.

    • Search Google Scholar
    • Export Citation
  • Kuroda, Y., and K. Kodera, 2002: Effect of solar activity on the polar-night jet oscillation in the northern and southern hemisphere winter. J. Meteor. Soc. Japan, 80 , 973984.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., and J. C. Comiso, 2002: Southern Ocean climate and sea ice anomalies associated with the Southern Oscillation. J. Climate, 15 , 487501.

    • Search Google Scholar
    • Export Citation
  • Lefebvre, W., H. Goosse, R. Timmermann, and T. Fichefet, 2004: Influence of the Southern Annular Mode on the sea ice–ocean system. J. Geophys. Res., 109 , C09005. doi:10.1029/2004JC002403.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19 , 276287.

    • Search Google Scholar
    • Export Citation
  • Liu, J. F., X. Yuan, D. Rind, and D. Martinson, 2002: Mechanism study of the ENSO and southern high latitude climate teleconnections. Geophys. Res. Lett., 29 , 1679. doi:10.1029/2002GL015143.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58 , 33123327.

  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16 , 41344143.

  • Marshall, G. J., A. Orr, N. P. M. van Lipzig, and J. C. King, 2006: The impact of a changing Southern Hemisphere annular mode on Antarctic Peninsula summer temperatures. J. Climate, 19 , 53885404.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., and M. P. Meredith, 2004: Variability of Antarctic circumpolar transport and the Southern Annular Mode associated with the Madden–Julian Oscillation. Geophys. Res. Lett., 31 , L24312. doi:10.1029/2004GL021666.

    • Search Google Scholar
    • Export Citation
  • Meneghini, B., I. Simmonds, and I. N. Smith, 2007: Association between Australian rainfall and the Southern Annular Mode. Int. J. Climatol., 27 , 109121.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17 , 18281844.

    • Search Google Scholar
    • Export Citation
  • Orr, A., G. J. Marshall, J. C. R. Hunt, J. Sommeria, C-G. Wang, N. P. M. van Lipzig, D. Cresswell, and J. C. King, 2008: Characteristics of summer airflow over the Antarctic peninsula in response to recent strengthening of westerly circumpolar winds. J. Atmos. Sci., 65 , 13961413.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and R. Walker, 2006: A re-examination of the winds of Adelie Land, Antarctica. Aust. Meteor. Mag., 55 , 105117.

  • Raphael, M. N., and M. M. Holland, 2006: Twentieth century simulation of the southern hemisphere climate in coupled models. Part 1: Large scale circulation variability. Climate Dyn., 26 , 217228.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., E. B. Horton, D. E. Parker, C. K. Folland, and R. B. Hackett, 1996: Version 2.2 of the global sea-ice and sea surface temperature data set, 1903–1994. UKMO Climate Research Tech. Note CRTN 74, 43 pp.

    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., and M. Rouault, 2005: Links between the Antarctic Oscillation and winter rainfall over western South Africa. Geophys. Res. Lett., 32 , L07705. doi:10.1029/2005GL022419.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., 2002: Southern Hemisphere circulation and relations with sea ice and sea surface temperature. J. Climate, 15 , 30583068.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., 2004: Trends in the Southern Hemisphere polar vortex in NCEP and ECMWF reanalyses. Geophys. Res. Lett., 31 , L07209. doi:10.1029/2003GL019302.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2004: Comments on “The structure and composition of the annular modes in an aquaplanet general circulation model”. J. Atmos. Sci., 61 , 949953.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2006: On the self-maintenance of midlatitude jets. J. Atmos. Sci., 63 , 21092122.

  • Roscoe, H. K., and J. D. Haigh, 2007: Influences of ozone depletion, the solar cycle and the QBO on the Southern Annular Mode. Quart. J. Roy. Meteor. Soc., 133 , 18551864.

    • Search Google Scholar
    • Export Citation
  • Silvestri, G. E., and C. S. Vera, 2003: Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geophys. Res. Lett., 30 , 2115. doi:10.1029/2003GL018277.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1996: A climatology of anticyclones and blocking for the Southern Hemisphere. Mon. Wea. Rev., 124 , 245263.

  • Sinclair, M. R., J. A. Renwick, and J. W. Kidson, 1997: Low-frequency variability of Southern Hemisphere sea level pressure and weather system activity. Mon. Wea. Rev., 125 , 25312543.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293 , 8589.

  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296 , 895899.

  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13 , 10181036.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1991: Storm tracks in the Southern Hemisphere. J. Atmos. Sci., 48 , 21592178.

  • Ummenhofer, C. C., and M. H. England, 2007: Interannual extremes in New Zealand precipitation linked to modes of Southern Hemisphere climate variability. J. Climate, 20 , 54185440.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., E. P. Gerber, P. J. Kushner, and B. A. Cash, 2004: A mechanism and simple dynamical model of the North Atlantic Oscillation and annular modes. J. Atmos. Sci., 61 , 264280.

    • Search Google Scholar
    • Export Citation
  • van Lipzig, N. P. M., G. J. Marshall, A. Orr, and J. C. King, 2008: The relationship between the Southern Hemisphere annular mode and Antarctic Peninsula summer temperatures: Analysis of a high-resolution model climatology. J. Climate, 21 , 16491668.

    • Search Google Scholar
    • Export Citation
  • Van Loon, H., 1972: Pressure in the Southern Hemisphere. Meteorology of the Southern Hemisphere, Meteor. Monogr., No. 35, Amer. Meteor. Soc., 59–86.

    • Search Google Scholar
    • Export Citation
  • Yu, J-Y., and D. L. Hartmann, 1993: Zonal flow vacillation and eddy forcing in a simple GCM of the atmosphere. J. Atmos. Sci., 50 , 32443259.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 770 247 21
PDF Downloads 587 181 13