Diurnal Cycle of Precipitation in the Tropics Simulated in a Global Cloud-Resolving Model

Tomonori Sato Center for Climate System Research, University of Tokyo, Chiba, Japan

Search for other papers by Tomonori Sato in
Current site
Google Scholar
PubMed
Close
,
Hiroaki Miura Colorado State University, Fort Collins, Colorado, and Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Tokyo, Japan

Search for other papers by Hiroaki Miura in
Current site
Google Scholar
PubMed
Close
,
Masaki Satoh Center for Climate System Research, University of Tokyo, Chiba, and Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Tokyo, Japan

Search for other papers by Masaki Satoh in
Current site
Google Scholar
PubMed
Close
,
Yukari N. Takayabu Center for Climate System Research, University of Tokyo, Chiba, and Institute of Observational Research for Global Change, Japan Agency for Marine-Earth Science and Technology, Tokyo, Japan

Search for other papers by Yukari N. Takayabu in
Current site
Google Scholar
PubMed
Close
, and
Yuqing Wang International Pacific Research Center, and Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Yuqing Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study analyzes the diurnal cycle of precipitation simulated in a global cloud-resolving model (GCRM) named the Nonhydrostatic Icosahedral Atmospheric Model (NICAM). A 30-day integration of NICAM successfully simulates the precipitation diurnal cycle associated with the land–sea breeze and the thermally induced topographic circulations as well as the horizontal propagation of diurnal cycle signals. The first harmonic of the diurnal cycle of precipitation in the 7-km run agrees well with that from satellite observations in its geographical distributions although its amplitude is slightly overestimated. The NICAM simulation revealed that the precipitation diurnal cycle over the Maritime Continent is strongly coupled with the land–sea breeze that controls the convergence/divergence pattern in the lower troposphere around the islands. The analysis also suggests that the cold pool often forms over the open ocean where the precipitation intensity is high, and the propagation of the cold pool events is related to the precipitation diurnal cycle as well as the land–sea breeze.

Sensitivity experiments suggest a prominent horizontal resolution dependence of the simulated precipitation diurnal cycle. Over continental areas the 14-km run induces the diurnal peak about three hours later than the 7-km run. The 3.5-km run produces the peak time and amplitude that are very similar to those in Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) observations. Meanwhile, the resolution dependence in phase and amplitude is negligibly small over the open oceans. This contrast sensitivity to the horizontal resolution is attributed to the differences in structure and life cycle of convective systems over land and ocean.

Diurnal peaks of precipitable water vapor, precipitation, and outgoing longwave radiation (OLR) are compared over land areas using the NICAM 7-km run. The daily precipitable water vapor maximum appears around 1500 local time (LT), which is followed by the precipitation peak around 1630 LT. The diurnal cycle of high clouds tends to peak around 1930 LT, three hours later than the precipitation peak. These results from NICAM simulations can explain the cause of the phase differences among precipitation products based on several satellite observations. The authors demonstrate that the GCRM is a promising tool for realistically simulating the precipitation diurnal cycle and could be quite useful for studying the role of the diurnal cycle in the climate systems in a global context.

* Current affiliation: Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan.

Corresponding author address: Tomonori Sato, Faculty of Environmental Earth Science, Hokkaido University, Kita-10, Nishi-5, Sapporo, 060-0810, Japan. Email: t_sato@ees.hokudai.ac.jp

Abstract

This study analyzes the diurnal cycle of precipitation simulated in a global cloud-resolving model (GCRM) named the Nonhydrostatic Icosahedral Atmospheric Model (NICAM). A 30-day integration of NICAM successfully simulates the precipitation diurnal cycle associated with the land–sea breeze and the thermally induced topographic circulations as well as the horizontal propagation of diurnal cycle signals. The first harmonic of the diurnal cycle of precipitation in the 7-km run agrees well with that from satellite observations in its geographical distributions although its amplitude is slightly overestimated. The NICAM simulation revealed that the precipitation diurnal cycle over the Maritime Continent is strongly coupled with the land–sea breeze that controls the convergence/divergence pattern in the lower troposphere around the islands. The analysis also suggests that the cold pool often forms over the open ocean where the precipitation intensity is high, and the propagation of the cold pool events is related to the precipitation diurnal cycle as well as the land–sea breeze.

Sensitivity experiments suggest a prominent horizontal resolution dependence of the simulated precipitation diurnal cycle. Over continental areas the 14-km run induces the diurnal peak about three hours later than the 7-km run. The 3.5-km run produces the peak time and amplitude that are very similar to those in Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) observations. Meanwhile, the resolution dependence in phase and amplitude is negligibly small over the open oceans. This contrast sensitivity to the horizontal resolution is attributed to the differences in structure and life cycle of convective systems over land and ocean.

Diurnal peaks of precipitable water vapor, precipitation, and outgoing longwave radiation (OLR) are compared over land areas using the NICAM 7-km run. The daily precipitable water vapor maximum appears around 1500 local time (LT), which is followed by the precipitation peak around 1630 LT. The diurnal cycle of high clouds tends to peak around 1930 LT, three hours later than the precipitation peak. These results from NICAM simulations can explain the cause of the phase differences among precipitation products based on several satellite observations. The authors demonstrate that the GCRM is a promising tool for realistically simulating the precipitation diurnal cycle and could be quite useful for studying the role of the diurnal cycle in the climate systems in a global context.

* Current affiliation: Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan.

Corresponding author address: Tomonori Sato, Faculty of Environmental Earth Science, Hokkaido University, Kita-10, Nishi-5, Sapporo, 060-0810, Japan. Email: t_sato@ees.hokudai.ac.jp

Save
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17 , 24932525.

  • Arakawa, O., and A. Kitoh, 2005: Rainfall diurnal variation over the Indonesian maritime continent simulated by 20 km-mesh GCM. SOLA, 1 , 109112. doi:10.2151/sola.2005-029.

    • Search Google Scholar
    • Export Citation
  • Chern, J., W-K. Tao, and X. Lin, 2006: Diurnal variations of the water cycle in the Goddard Multi-scale Modeling Framework. Proc. 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 16D.4.

    • Search Google Scholar
    • Export Citation
  • Collier, J. C., and K. P. Bowman, 2004: Diurnal cycle of tropical precipitation in a general circulation model. J. Geophys. Res., 109 , D17105. doi:10.1029/2004JD004818.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14 , 11121128.

  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19 , 46054630.

  • Dai, A., X. Lin, and K. L. Hsu, 2007: The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Climate Dyn., 29 , 727744.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., D. A. Randall, and M. Khairoutdinov, 2007: Convective precipitation variability as a tool for general circulation model analysis. J. Climate, 20 , 91112.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., S. G. Llewellyn Smith, and N. M. Statom, 2005: Global observations of the land breeze. Geophys. Res. Lett., 32 , L05605. doi:10.1029/2004GL022139.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58 , 978997.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105 , 11711188.

  • Hirose, M., and K. Nakamura, 2005: Spatial and diurnal variation of precipitation systems over Asia observed by the TRMM Precipitation Radar. J. Geophys. Res., 110 , D05106. doi:10.1029/2004JD004815.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., S. G. Geotis, F. D. Marks, and A. K. West, 1981: Winter monsoon convection in the vicinity of North Borneo. Part I: Structure and time variation of the clouds and precipitation. Mon. Wea. Rev., 109 , 15951614.

    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., and T. Yasunari, 2006: Time–space characteristics of diurnal rainfall over Borneo and surrounding oceans as observed by TRMM-PR. J. Climate, 19 , 12381260.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., M. Satoh, H. Miura, and B. E. Mapes, 2008: Characteristics of cloud size of deep convection simulated by a global cloud resolving model. J. Meteor. Soc. Japan, 86A , 115.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, and J. A. Cotturone, 2001: Multiscale variability of the atmospheric mixed layer over the western Pacific warm pool. J. Atmos. Sci., 58 , 27292750.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR community climate system model: Preliminary results. Geophys. Res. Lett., 28 , 36173620.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., D. A. Randall, and C. DeMotte, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a super-parameterization of physical processes. J. Atmos. Sci., 62 , 21362154.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., C. DeMotte, and D. A. Randall, 2008: Evaluation of the simulated interannual and subseasonal variability in an AMIP-style simulation using the CSU multiscale modeling framework. J. Climate, 21 , 413431.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21 , 26802696.

  • Kuroda, Y., 2002: TRITON: Present status and future plan. Report for the International Workshop for Review of the Tropical Moored Buoy Network, JAMSTEC, 77 pp. [Available online at http://www.jamstec.go.jp/jamstec/TRITON/future/pdf/Status.pdf].

    • Search Google Scholar
    • Export Citation
  • Lee, M-I., and Coauthors, 2007: Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico. J. Climate, 20 , 18621881.

    • Search Google Scholar
    • Export Citation
  • Lin, X., D. A. Randall, and L. D. Fowler, 2000: Diurnal variability of the hydrologic cycle and radiative fluxes: Comparisons between observations and a GCM. J. Climate, 13 , 41594179.

    • Search Google Scholar
    • Export Citation
  • Lin, X., L. D. Fowler, and D. A. Randall, 2002: Flying the TRMM satellite in a general circulation model. J. Geophys. Res., 107 , 4281. doi:10.1029/2001JD000619.

    • Search Google Scholar
    • Export Citation
  • Lorenz, P., and D. Jacob, 2005: Influence of regional scale information on the global circulation: A two-way nesting climate simulation. Geophys. Res. Lett., 32 , L18706. doi:10.1029/2005GL023351.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, M. Xu, and A. J. Negri, 2003a: Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Mon. Wea. Rev., 131 , 799812.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003b: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131 , 830844.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., M. Satoh, and H. Miura, 2008: A joint satellite and global cloud-resolving model analysis of a Madden-Julian Oscillation event: Model diagnosis. J. Geophys. Res., 113 , D17210. doi:10.1029/2008JD009986.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1995: The Tropical Atmosphere Ocean (TAO) array is completed. Bull. Amer. Meteor. Soc., 76 , 739741.

  • Miura, H., M. Satoh, T. Nasuno, A. T. Noda, and K. Oouchi, 2007a: A Madden-Julian Oscillation event simulated using a global cloud-resolving model. Science, 318 , 17631765.

    • Search Google Scholar
    • Export Citation
  • Miura, H., M. Satoh, H. Tomita, A. T. Noda, T. Nasuno, and S. Iga, 2007b: A short-duration global cloud-resolving simulation with a realistic land and sea distribution. Geophys. Res. Lett., 34 , L02804. doi:10.1029/2006GL027448.

    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2004: Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian maritime continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132 , 20212039.

    • Search Google Scholar
    • Export Citation
  • Moteki, Q., and Coauthors, 2008: Mechanism of the northward propagation of mesoscale convective systems observed on 15 June 2005 during PALAU2005. J. Geophys. Res., 113 , D14126. doi:10.1029/2008JD009793.

    • Search Google Scholar
    • Export Citation
  • Nasuno, T., H. Tomita, S. Iga, H. Miura, and M. Satoh, 2008: Convectively coupled equatorial waves simulated by a global nonhydrostatic experiment on an aqua planet. J. Atmos. Sci., 65 , 12461265.

    • Search Google Scholar
    • Export Citation
  • Neale, R., and J. Slingo, 2003: The maritime continent and its role in the global climate: A GCM study. J. Climate, 16 , 834848.

  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16 , 14561475.

    • Search Google Scholar
    • Export Citation
  • Petch, J. C., A. R. Brown, and M. E. B. Gray, 2002: The impact of horizontal resolution on the simulations of convective development over land. Quart. J. Roy. Meteor. Soc., 128 , 20312044.

    • Search Google Scholar
    • Export Citation
  • Qian, J. H., 2008: Why precipitation is mostly concentrated over islands in the maritime continent. J. Atmos. Sci., 65 , 14281441.

  • Rasch, P. J., and Coauthors, 2006: A characterization of tropical transient activity in the CAM3 atmospheric hydrologic cycle. J. Climate, 19 , 22222242.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimal interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., 2004: Nocturnal cloud systems and the diurnal variation of clouds and rainfall in southwestern Amazonia. Mon. Wea. Rev., 132 , 12011219.

    • Search Google Scholar
    • Export Citation
  • Saito, K., T. Keenan, G. Holland, and K. Puri, 2001: Numerical simulation of the diurnal evolution of tropical island convection over the maritime continent. Mon. Wea. Rev., 129 , 378400.

    • Search Google Scholar
    • Export Citation
  • Sato, T., and F. Kimura, 2005: Diurnal cycle of convective instability around the central mountains in Japan during the warm season. J. Atmos. Sci., 62 , 16261636.

    • Search Google Scholar
    • Export Citation
  • Sato, T., H. Miura, and M. Satoh, 2007: Spring diurnal cycle of clouds over Tibetan Plateau: Global cloud-resolving simulations and satellite observations. Geophys. Res. Lett., 34 , L18816. doi:10.1029/2007GL030782.

    • Search Google Scholar
    • Export Citation
  • Sato, T., T. Yoshikane, M. Satoh, H. Miura, and H. Fujinami, 2008: Resolution dependency of the diurnal cycle of convective clouds over the Tibetan Plateau in a mesoscale model. J. Meteor. Soc. Japan, 86A , 1731.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., 2008: Numerical simulations of heavy rainfalls by a global cloud-resolving model. J. Disaster Res., 3 , 3338.

  • Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227 , 34863514. doi:10.1016/j.jcp.2007.02.006.

    • Search Google Scholar
    • Export Citation
  • Satomura, T., 2000: Diurnal variation of precipitation over the Indo-China Peninsula: Two-dimensional numerical simulation. J. Meteor. Soc. Japan, 78 , 461475.

    • Search Google Scholar
    • Export Citation
  • Shi, X-Y., Y. Wang, and X-D. Xu, 2008: Effect of mesoscale topography over the Tibetan Plateau on summer precipitation in China: A regional model study. Geophys. Res. Lett., 35 , L19707. doi:10.1029/2008GL034740.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W. K. Tao, and D. E. Johnson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43 , 10951113.

    • Search Google Scholar
    • Export Citation
  • Skinner, T., and N. Tapper, 1994: Preliminary sea breeze studies over Bathurst and Melville Islands, northern Australia, as part of the island thunderstorm experiment (ITEX). Meteor. Atmos. Phys., 53 , 7794.

    • Search Google Scholar
    • Export Citation
  • Sui, C-H., K. M. Lau, Y. N. Takayabu, and D. A. Short, 1997: Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J. Atmos. Sci., 54 , 639655.

    • Search Google Scholar
    • Export Citation
  • Sui, C-H., X. Li, and K-M. Lau, 1998: Radiative–convective processes in simulated diurnal variations of tropical oceanic convection. J. Atmos. Sci., 55 , 23452357.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 2006: Rain-yield per flash calculated from TRMM PR and LIS data and its relationship to the contribution of tall convective rain. Geophys. Res. Lett., 33 , L18705. doi:10.1029/2006GL027531.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., and M. Kimoto, 2008: Diurnal march of rainfall simulated in a T106 AGCM and dependence on cumulus schemes. J. Meteor. Soc. Japan, 86A , 163173.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., 2007: Cloud resolving modeling. J. Meteor. Soc. Japan, 85B , 305330.

  • Tao, W. K., S. Lang, J. Simpson, C. H. Sui, B. Ferrier, and M-D. Chou, 1996: Mechanisms of cloud-radiation interaction in the tropics and midlatitudes. J. Atmos. Sci., 53 , 26242651.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., and Coauthors, 2009: A multiscale modeling system: Developments, applications, and critical issues. Bull. Amer. Meteor. Soc., 90 , 515534.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34 , 357400.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., H. Miura, S. Iga, T. Nasuno, and M. Satoh, 2005: A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys. Res. Lett., 32 , L08805. doi:10.1029/2005GL022459.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., S-P. Xie, H. Xu, and B. Wang, 2004: Regional model simulations of marine boundary layer clouds over the southeast Pacific off South America. Part I: Control experiment. Mon. Wea. Rev., 132 , 274296.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., L. Zhou, and K. Hamilton, 2007: Effect of convective entrainment/detrainment on simulation of tropical precipitation diurnal cycle. Mon. Wea. Rev., 135 , 567585.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., B. E. Mapes, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part II: Model simulations. Mon. Wea. Rev., 131 , 813829.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., S. Emori, M. Satoh, and H. Miura, 2008: A PDF-based hybrid prognostic cloud scheme for general circulation models. Climate Dyn., doi:10.1007/s00382-008-0489-0.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125 , 527548.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M. K., F. A. Furuzawa, A. Higuchi, and K. Nakamura, 2008: Comparison of diurnal variations in precipitation systems observed by TRMM PR, TMI, and VIRS. J. Climate, 21 , 40114028.

    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129 , 784801.

  • Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107 , 4220. doi:10.1029/2001JD001005.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2008: On the diurnal cycle of deep convection, high-level cloud, and upper troposphere water vapor in the Multiscale Modeling Framework. J. Geophys. Res., 113 , D16105. doi:10.1029/2008JD009905.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., and Y. Wang, 2006: Tropical Rainfall Measuring Mission observation and regional model study of precipitation diurnal cycle in the New Guinean region. J. Geophys. Res., 111 , D17104. doi:10.1029/2006JD007243.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., 2003: Convective clouds over the Bay of Bengal. Mon. Wea. Rev., 131 , 780798.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1465 541 29
PDF Downloads 874 225 21