Climate Response of the Equatorial Pacific to Global Warming

Pedro N. DiNezio Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

Search for other papers by Pedro N. DiNezio in
Current site
Google Scholar
PubMed
Close
,
Amy C. Clement Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Amy C. Clement in
Current site
Google Scholar
PubMed
Close
,
Gabriel A. Vecchi NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Gabriel A. Vecchi in
Current site
Google Scholar
PubMed
Close
,
Brian J. Soden Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Brian J. Soden in
Current site
Google Scholar
PubMed
Close
,
Benjamin P. Kirtman Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Benjamin P. Kirtman in
Current site
Google Scholar
PubMed
Close
, and
Sang-Ki Lee Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

Search for other papers by Sang-Ki Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The climate response of the equatorial Pacific to increased greenhouse gases is investigated using numerical experiments from 11 climate models participating in the Intergovernmental Panel on Climate Change’s Fourth Assessment Report. Multimodel mean climate responses to CO2 doubling are identified and related to changes in the heat budget of the surface layer. Weaker ocean surface currents driven by a slowing down of the Walker circulation reduce ocean dynamical cooling throughout the equatorial Pacific. The combined anomalous ocean dynamical plus radiative heating from CO2 is balanced by different processes in the western and eastern basins: Cloud cover feedbacks and evaporation balance the heating over the warm pool, while increased cooling by ocean vertical heat transport balances the warming over the cold tongue. This increased cooling by vertical ocean heat transport arises from increased near-surface thermal stratification, despite a reduction in vertical velocity. The stratification response is found to be a permanent feature of the equilibrium climate potentially linked to both thermodynamical and dynamical changes within the equatorial Pacific. Briefly stated, ocean dynamical changes act to reduce (enhance) the net heating in the east (west). This explains why the models simulate enhanced equatorial warming, rather than El Niño–like warming, in response to a weaker Walker circulation. To conclude, the implications for detecting these signals in the modern observational record are discussed.

Corresponding author address: Pedro N. DiNezio, 4600 Rickenbacker Causeway, Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149. Email: pdinezio@rsmas.miami.edu

Abstract

The climate response of the equatorial Pacific to increased greenhouse gases is investigated using numerical experiments from 11 climate models participating in the Intergovernmental Panel on Climate Change’s Fourth Assessment Report. Multimodel mean climate responses to CO2 doubling are identified and related to changes in the heat budget of the surface layer. Weaker ocean surface currents driven by a slowing down of the Walker circulation reduce ocean dynamical cooling throughout the equatorial Pacific. The combined anomalous ocean dynamical plus radiative heating from CO2 is balanced by different processes in the western and eastern basins: Cloud cover feedbacks and evaporation balance the heating over the warm pool, while increased cooling by ocean vertical heat transport balances the warming over the cold tongue. This increased cooling by vertical ocean heat transport arises from increased near-surface thermal stratification, despite a reduction in vertical velocity. The stratification response is found to be a permanent feature of the equilibrium climate potentially linked to both thermodynamical and dynamical changes within the equatorial Pacific. Briefly stated, ocean dynamical changes act to reduce (enhance) the net heating in the east (west). This explains why the models simulate enhanced equatorial warming, rather than El Niño–like warming, in response to a weaker Walker circulation. To conclude, the implications for detecting these signals in the modern observational record are discussed.

Corresponding author address: Pedro N. DiNezio, 4600 Rickenbacker Causeway, Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149. Email: pdinezio@rsmas.miami.edu

Save
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Bunge, L., and A. J. Clarke, 2009: A verified estimation of the El Niño index Niño-3.4 since 1877. J. Climate, 22 , 39793992.

  • Cane, M. A., 1979: The response of an equatorial ocean to simple wind stress patterns. I: Model formulation and analytic results. J. Mar. Res., 37 , 233252.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth century sea surface temperature trends. Science, 275 , 957960.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9 , 21902196.

  • Collins, M., and CMIP Modeling Groups, 2005: El Nino- or La Nina-like climate change? Climate Dyn., 24 , 89104.

  • Collins, W. D., F. P. J. Valero, P. J. Flatau, D. Lubin, H. Grassl, P. Pilewskie, and J. Spinherne, 1996: Radiative effects of convection in the tropical Pacific. J. Geophys. Res., 101 , 1499915012.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 527–582.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDLs CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., and J. D. Neelin, 1995: Ocean–atmosphere interaction and the tropical climatology. Part II: Why the Pacific cold tongue is in the east. J. Climate, 8 , 1343.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and S. G. Philander, 2000: Is El Niño changing? Science, 288 , 19972002.

  • Fedorov, A. V., and S. G. Philander, 2001: A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14 , 30863101.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., and G. J. Boer, 2001: Warming asymmetry in climate change simulations. Geophys. Res. Lett., 28 , 195198.

  • Gnanadesikan, A., J. L. Russell, and F. Zeng, 2007: How does ocean ventilation change under global warming? Ocean Sci., 3 , 4353.

  • Goosse, H., and T. Fichefet, 1999: Importance of ice-ocean interactions for the global ocean circulation: A model study. J. Geophys. Res., 104 , 337355.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over the tropical oceans. Science, 238 , 657659.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Earth’s energy imbalance: Confirmation and implications. Science, 308 , 14311435. doi:10.1126/science.1110252.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, 2006: Global temperature change. Proc. Natl. Acad. Sci. USA, 103 , 1428814293.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and M. L. Michelsen, 1993: Large-scale effects on the regulation of tropical sea surface temperature. J. Climate, 6 , 20492062.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., and S. Emori, Eds. 2004: K-1 coupled model (MIROC) description. Center for Climate System Research, University of Tokyo, K-1 Tech. Rep. 1, 34 pp.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19 , 56865699.

  • Hoerling, M., and A. Kumar, 2003: The perfect ocean for drought. Science, 299 , 691694.

  • Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32 , 33283345.

  • Jin, F-F., 1996: Tropical ocean-atmosphere interaction, the Pacific cold-tongue, and the El Niño-Southern Oscillation. Science, 274 , 7678.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K., R. Seager, A. Kaplan, Y. Kushnir, and M. Cane, 2009: Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J. Climate, 22 , 43164321.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15871606.

  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8 , 21812199.

    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., A. R. Stine, N. Y. Krakauer, and J. C. H. Chiang, 2008: How much will precipitation increase with global warming? Eos, Trans. Amer. Geophys. Union, 89 .doi:10.1029/2008EO210001.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 1998: The role of the ocean in the response of tropical climatology to global warming: The west–east SST contrast. J. Climate, 11 , 864875.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., S. G. H. Philander, and R. C. Pacanowski, 1994: A GCM study of tropical–subtropical upper-ocean water exchange. J. Phys. Oceanogr., 24 , 26062623.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., S. J. Vavrus, F. He, N. Wen, and Y. Zhang, 2005: Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Climate, 18 , 46844700.

    • Search Google Scholar
    • Export Citation
  • Lu, P., and J. P. McCreary, 1995: Influence of the ITCZ on the flow of thermocline water from the subtropical to the equatorial ocean. J. Phys. Oceanogr., 25 , 30763088.

    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Roeske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5 , 91127.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1993: TOGA-TAO and the 1991–93 El Niño-Southern Oscillation event. Oceanography, 6 , 3644.

  • McPhaden, M. J., and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415 , 603608.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and W. M. Washington, 1996: El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature, 382 , 5660.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. D. Collins, B. A. Boville, J. T. Kiehl, T. M. L. Wigley, and J. M. Arblaster, 2000: Response of the NCAR Climate System Model to increased CO2 and the role of physical processes. J. Climate, 13 , 18791898.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1981: The response of equatorial oceans to a relaxation of the trade winds. J. Phys. Oceanogr., 11 , 176189.

  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52 , 17841806.

  • Ramanathan, V., and W. Collins, 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351 , 2732.

    • Search Google Scholar
    • Export Citation
  • Salas-Mélia, D., and Coauthors, 2005: Description and validation of the CNRM-CM3 global coupled model. CNRM Working Note 103, 36 pp.

  • Schubert, S. D., 2004: On the cause of the 1930s Dust Bowl. Science, 303 , 18551859.

  • Seager, R., and R. Murtugudde, 1997: Ocean dynamics, thermocline adjustment and regulation of tropical SST. J. Climate, 10 , 521539.

  • Seager, R., S. E. Zebiak, and M. A. Cane, 1988: A model of the tropical Pacific sea-surface temperature climatology. J. Geophys. Res., 93 , (C2). 12651280.

    • Search Google Scholar
    • Export Citation
  • Seager, R., R. Murtugudde, A. Clement, and C. Herweijer, 2003: Why is there an evaporation minimum at the equator? J. Climate, 16 , 37933802.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18 , 40654088.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., 2003: On the coexistence of an evaporation minimum and precipitation maximum in the warm pool. J. Climate, 16 , 10031009.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19 , 33543360.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability from regional TOPEX/Poseidon altimeter measurements. J. Phys. Oceanogr., 27 , 17431769.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., 2009: The global hydrological cycle and atmospheric shortwave absorption in climate models under CO2 forcing. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., J. Oberhuber, A. Bacher, M. Esch, M. Latif, and E. Roeckner, 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398 , 694696.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007a: Global warming and the weakening of the tropical circulation. J. Climate, 20 , 43164340.

  • Vecchi, G. A., and B. J. Soden, 2007b: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450 , 10661070. doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441 , 7376. doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., A. Clement, and B. J. Soden, 2008: Examining the tropical Pacific’s response to global warming. Eos, Trans. Amer. Geophys. Union, 89 .doi:10.1029/2008EO090002.

    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., and N. A. Diansky, 2004: El Niño reproduction in coupled general circulation model. Russ. Meteor. Hydrol., 12 , 514.

  • Waliser, D. E., 1996: Formation and limiting mechanisms for very high sea surface temperature: Linking the dynamics and the thermodynamics. J. Climate, 9 , 161188.

    • Search Google Scholar
    • Export Citation
  • Wallace, J., 1992: Effect of deep convection on the regulation of tropical sea surface temperature. Nature, 357 , 230231.

  • Wang, C., and S-K. Lee, 2008: Global warming and United States landfalling hurricanes. J. Geophys. Res., 35 , L02708. doi:10.1029/2007GL032396.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317 , 233235.

  • Wittenberg, A. T., A. Rosati, N-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19 , 698722.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1981: An estimate of equatorial upwelling in the Pacific. J. Phys. Oceanogr., 11 , 12051214.

  • Yu, Y. Q., X. H. Zhang, and Y. F. Guo, 2004: Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21 , 444455.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and A. Noda, 2002: Improvements in the Meteorological Research Institute Global Ocean-Atmosphere Coupled GCM (MRI-CGCM2) and its climate sensitivity. NIES Tech. Rep. 10, 8 pp.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and H. Song, 2006: Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific. Geophys. Res. Lett., 33 , L12701. doi:10.1029/2006GL025942.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2087 943 47
PDF Downloads 1361 502 33