On the Relationship between the North Atlantic Meridional Overturning Circulation and the Surface-Forced Overturning Streamfunction

Jeremy P. Grist National Oceanography Centre, Southampton, Southampton, Hampshire, United Kingdom

Search for other papers by Jeremy P. Grist in
Current site
Google Scholar
PubMed
Close
,
Robert Marsh National Oceanography Centre, Southampton, and School of Ocean and Earth Science, University of Southampton, Southampton, Hampshire, United Kingdom

Search for other papers by Robert Marsh in
Current site
Google Scholar
PubMed
Close
, and
Simon A. Josey National Oceanography Centre, Southampton, Southampton, Hampshire, United Kingdom

Search for other papers by Simon A. Josey in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The influence of surface thermohaline forcing on the variability of the Atlantic meridional overturning circulation (MOC) at mid–high latitudes is investigated using output from three Intergovernmental Panel on Climate Change (IPCC) coupled climate models. The method employed is an extension of the surface-forced streamfunction approach, based on water mass transformation theory, used in an earlier study by . The maximum value of the MOC at 48°N is found to have a significant lagged relationship with the maximum surface-forced streamfunction in the region north of 48°N with a surface density greater than σ0 = 27.5 kg m−3. This correlation peaks when the index of the surface-forced streamfunction leads the MOC by 2–4 yr, depending on the coupled model considered. A method for estimating the MOC variability solely from the surface forcing fields is developed and found to be in good agreement with the actual model MOC variability in all three of the models considered when a past averaging window of 10 yr is employed. This method is then applied with NCEP–NCAR reanalysis surface flux fields for the period 1949–2007 to reconstruct MOC strength over 1958–2007. The reconstructed MOC shows considerable multidecadal variability but no discernible trend over the modern observational era.

Corresponding author address: Dr. Jeremy Grist, Ocean Observing and Climate (256/18), National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, United Kingdom. Email: jeremy.grist@noc.soton.ac.uk

Abstract

The influence of surface thermohaline forcing on the variability of the Atlantic meridional overturning circulation (MOC) at mid–high latitudes is investigated using output from three Intergovernmental Panel on Climate Change (IPCC) coupled climate models. The method employed is an extension of the surface-forced streamfunction approach, based on water mass transformation theory, used in an earlier study by . The maximum value of the MOC at 48°N is found to have a significant lagged relationship with the maximum surface-forced streamfunction in the region north of 48°N with a surface density greater than σ0 = 27.5 kg m−3. This correlation peaks when the index of the surface-forced streamfunction leads the MOC by 2–4 yr, depending on the coupled model considered. A method for estimating the MOC variability solely from the surface forcing fields is developed and found to be in good agreement with the actual model MOC variability in all three of the models considered when a past averaging window of 10 yr is employed. This method is then applied with NCEP–NCAR reanalysis surface flux fields for the period 1949–2007 to reconstruct MOC strength over 1958–2007. The reconstructed MOC shows considerable multidecadal variability but no discernible trend over the modern observational era.

Corresponding author address: Dr. Jeremy Grist, Ocean Observing and Climate (256/18), National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, United Kingdom. Email: jeremy.grist@noc.soton.ac.uk

Save
  • Balmaseda, M. A., G. C. Smith, K. Haines, D. Anderson, T. N. Palmer, and A. Vidard, 2007: Historical reconstruction of the Atlantic Meridional Overturning Circulation from the ECMWF operational ocean reanalysis. Geophys. Res. Lett., 34 , L23615. doi:10.1029/2007GL031645.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2009: A new air–sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90 , 645656.

    • Search Google Scholar
    • Export Citation
  • Bingham, R. J., C. W. Hughes, V. Roussenov, and R. G. Williams, 2007: Meridional coherence of the North Atlantic meridional overturning circulation. Geophys. Res. Lett., 34 , L23606. doi:10.1029/2007GL031731.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., S. Levitus, J. I. Antonov, R. A. Locarnini, and H. E. Garcia, 2005: Linear trends in salinity for the World Ocean 1955–1998. Geophys. Res. Lett., 32 , L01604. doi:10.1029/2004GL021791.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom in a time-varying field. J. Climate, 12 , 19902009.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., H. R. Longworth, and S. A. Cunningham, 2005: Slowing of the Atlantic meridional overturning circulation at 25°N. Nature, 438 , 655657.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317 , 935938.

    • Search Google Scholar
    • Export Citation
  • Curry, R. G., M. S. McCartney, and T. M. Joyce, 1998: Oceanic transport of subpolar climate signals to mid-depth subtropical waters. Nature, 391 , 575577.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part 1: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., J. Meincke, S-A. Malmberg, and A. J. Lee, 1988: The “Great Salinity Anomaly” in the northern North Atlantic 1968–1982. Prog. Oceanogr., 20 , 103151.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., J. Lazier, J. Meincke, P. Rhines, and J. Swift, 1996: Long-term co-ordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr., 38 , 241295.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and J. Willebrand, 2001: Mechanism of interannual to decadal variability of the North Atlantic circulation. J. Climate, 14 , 22662280.

    • Search Google Scholar
    • Export Citation
  • Furevik, T., M. Bentsen, H. Drange, I. K. T. Kindem, N. G. Kvamstø, and A. Sorteberg, 2003: Description and evaluation of the Bergen climate model: ARPEGE coupled with MICOM. Climate Dyn., 21 , 2751.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19 , 675697.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16 , 147168.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2005: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett., 32 , L12703. doi:10.1029/2005GL023209.

    • Search Google Scholar
    • Export Citation
  • Grist, J. P., S. A. Josey, and B. Sinha, 2007: Impact on the ocean of extreme Greenland Sea heat loss in the HadCM3 coupled ocean–atmosphere model. J. Geophys. Res., 112 , C04014. doi:10.1029/2006JC003629.

    • Search Google Scholar
    • Export Citation
  • Grist, J. P., S. A. Josey, B. Sinha, and A. T. Blaker, 2008: Response of the Denmark Strait overflow to Nordic Seas heat loss. J. Geophys. Res., 113 , C09019. doi:10.1029/2007JC004625.

    • Search Google Scholar
    • Export Citation
  • Haine, T., and Coauthors, 2007: North Atlantic Deep Water transformation in the Labrador Sea, recirculation through the subpolar gyre, and discharge to the subtropics. Arctic–Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, R. Dickson, J. Meincke, and P. Rhines, Eds., Springer, 653–701. [Available online at http://www.jhu.edu/~thaine1/Haine_etal07.pdf].

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and D. P. Marshall, 2002: A theory for the surface Atlantic response to thermohaline variability. J. Phys. Oceanogr., 32 , 11211132.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., J. P. Grist, and R. Marsh, 2009: Estimates of meridional overturning from surface density flux fields. J. Geophys. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32 , L20708. doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., and D. Stammer, 2007: Variability of the meridional overturning in the North Atlantic from the 50 years GECCO state estimation. Rep. 43, Institut für Meereskunde, University of Hamburg, 38 pp.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf, 2007: On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys., 45 , RG2001. doi:10.1029/2004RG000166.

    • Search Google Scholar
    • Export Citation
  • Latif, M., C. Böning, J. Willebrand, A. Biastoch, J. Dengg, N. Keenlyside, and U. Schweckendiek, 2006: Is the thermohaline circulation changing? J. Climate, 19 , 46314637.

    • Search Google Scholar
    • Export Citation
  • Marsh, R., 2000: Recent variability of the North Atlantic thermohaline circulation inferred from surface heat and freshwater fluxes. J. Climate, 13 , 32393260.

    • Search Google Scholar
    • Export Citation
  • Marsh, R., A. J. G. Nurser, A. P. Megann, and A. L. New, 2000: Water mass transformation in the Southern Ocean of a global isopycnal coordinate GCM. J. Phys. Oceanogr., 30 , 10131045.

    • Search Google Scholar
    • Export Citation
  • Nurser, A. J. G., R. Marsh, and R. G. Williams, 1999: Diagnosing water mass formation from air–sea fluxes and surface mixing. J. Phys. Oceanogr., 29 , 14681487.

    • Search Google Scholar
    • Export Citation
  • Rhein, M., 1996: Convection in the Greenland Sea 1982–1993. J. Geophys. Res., 101 , 1818318192.

  • Roberts, M. J., and R. A. Wood, 1997: Topography sensitivity studies with a Bryan–Cox-type ocean model. J. Phys. Oceanogr., 27 , 823836.

    • Search Google Scholar
    • Export Citation
  • Ronski, S., and G. Budéus, 2005: How to identify winter convection in the Greenland Sea from hydrographic summer data. J. Geophys. Res., 110 , C11010. doi:10.1029/2003JC002156.

    • Search Google Scholar
    • Export Citation
  • Schmitt, F. W., P. S. Bogden, and C. E. Dorman, 1989: Evaporation minus precipitation and density fluxes for the North Atlantic. J. Phys. Oceanogr., 19 , 12081221.

    • Search Google Scholar
    • Export Citation
  • Wolff, J., E. Maier-Reimerr, and S. Legutke, 1997: The Hamburg ocean primitive equation model. Tech. Rep. 13, Deutsches Klimarechenzentrum, Hamburg, Germany, 81 pp.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2005: The total meridional heat flux and its oceanic and atmospheric partition. J. Climate, 18 , 43744380.

  • Wunsch, C., and P. Heimbach, 2006: Estimated decadal changes in North Atlantic meridional overturning circulation and heat flux 1993–2004. J. Phys. Oceanogr., 36 , 20122024.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., J. R. N. Lazier, and R. A. Clarke, 2003: Temperature and salinity in the central Labrador Sea during the 1990’s and in the context of the longer-term change. ICES J. Mar. Sci., 219 , 3239.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 610 280 129
PDF Downloads 376 118 6