The Soil Moisture–Precipitation Feedback in Simulations with Explicit and Parameterized Convection

Cathy Hohenegger Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

Search for other papers by Cathy Hohenegger in
Current site
Google Scholar
PubMed
Close
,
Peter Brockhaus Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

Search for other papers by Peter Brockhaus in
Current site
Google Scholar
PubMed
Close
,
Christopher S. Bretherton Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Christopher S. Bretherton in
Current site
Google Scholar
PubMed
Close
, and
Christoph Schär Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

Search for other papers by Christoph Schär in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Moist convection is a key aspect of the extratropical summer climate and strongly affects the delicate balance of processes that determines the surface climate in response to larger-scale forcings. Previous studies using parameterized convection have found that the feedback between soil moisture and precipitation is predominantly positive (more precipitation over wet soils) over Europe. Here this feedback is investigated for one full month (July 2006) over the Alpine region using two different model configurations. The first one employs regional climate simulations performed with the Consortium for Small-Scale Modeling Model in Climate Mode (CCLM) on a grid spacing of 25 km. The second one uses the same model but integrated on a cloud-resolving grid of 2.2 km, allowing an explicit treatment of convection. Each configuration comprises one control and two sensitivity experiments. The latter start from perturbed soil moisture initial conditions.

Comparison of the simulated soil moisture–precipitation feedback reveals significant differences between the two systems. The 25-km simulations sustain a strong positive feedback, while those at 2.2-km resolution are associated with a predominantly negative feedback. Thus the two systems yield not only different strengths of this key feedback but also different signs. This has important implications, with the cloud-resolving model exhibiting a shorter soil moisture memory and a smaller soil moisture–temperature feedback.

Analysis shows that the different feedback signs relate to the sensitivity of the simulated convective development to the presence of a stable layer sitting on top of the planetary boundary layer. In the 2.2-km integrations, dry initial soil moisture conditions yield more vigorous thermals (owing to stronger daytime heating), which can more easily break through the stable air barrier, thereby leading to deep convection and ultimately to a negative soil moisture–precipitation feedback loop. In the 25-km integrations, deep convection is much less sensitive to the stable layer because of the design of the employed convective parameterization. The authors also show that there are considerable differences in the simulated soil moisture–precipitation feedback between low-resolution modeling frameworks using different cloud convection schemes.

* Current affiliation: Department of Atmospheric Sciences, University of Washington, Seattle, Washington.

Corresponding author address: Cathy Hohenegger, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. Email: hohenegg@washington.edu

Abstract

Moist convection is a key aspect of the extratropical summer climate and strongly affects the delicate balance of processes that determines the surface climate in response to larger-scale forcings. Previous studies using parameterized convection have found that the feedback between soil moisture and precipitation is predominantly positive (more precipitation over wet soils) over Europe. Here this feedback is investigated for one full month (July 2006) over the Alpine region using two different model configurations. The first one employs regional climate simulations performed with the Consortium for Small-Scale Modeling Model in Climate Mode (CCLM) on a grid spacing of 25 km. The second one uses the same model but integrated on a cloud-resolving grid of 2.2 km, allowing an explicit treatment of convection. Each configuration comprises one control and two sensitivity experiments. The latter start from perturbed soil moisture initial conditions.

Comparison of the simulated soil moisture–precipitation feedback reveals significant differences between the two systems. The 25-km simulations sustain a strong positive feedback, while those at 2.2-km resolution are associated with a predominantly negative feedback. Thus the two systems yield not only different strengths of this key feedback but also different signs. This has important implications, with the cloud-resolving model exhibiting a shorter soil moisture memory and a smaller soil moisture–temperature feedback.

Analysis shows that the different feedback signs relate to the sensitivity of the simulated convective development to the presence of a stable layer sitting on top of the planetary boundary layer. In the 2.2-km integrations, dry initial soil moisture conditions yield more vigorous thermals (owing to stronger daytime heating), which can more easily break through the stable air barrier, thereby leading to deep convection and ultimately to a negative soil moisture–precipitation feedback loop. In the 25-km integrations, deep convection is much less sensitive to the stable layer because of the design of the employed convective parameterization. The authors also show that there are considerable differences in the simulated soil moisture–precipitation feedback between low-resolution modeling frameworks using different cloud convection schemes.

* Current affiliation: Department of Atmospheric Sciences, University of Washington, Seattle, Washington.

Corresponding author address: Cathy Hohenegger, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. Email: hohenegg@washington.edu

Save
  • Bechtold, P., E. Bazile, F. Guichard, P. Mascart, and E. Richard, 2001: A mass-flux convection scheme for regional and global models. Quart. J. Roy. Meteor. Soc., 127 , 869886.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J. P. Chaboureau, A. Beljaars, A. K. Betts, M. Kohler, M. Miller, and J. L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130 , 31193137.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., P. Viterbo, M. J. Miller, and A. K. Betts, 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture. Mon. Wea. Rev., 124 , 362383.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2004: Understanding hydrometeorology using global models. Bull. Amer. Meteor. Soc., 85 , 16731688.

  • Betts, A. K., J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. A. Viterbo, 1996: The land surface–atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101 , 72097225.

    • Search Google Scholar
    • Export Citation
  • Brockhaus, P., D. Lüthi, and C. Schär, 2008: Aspects of the diurnal cycle in a regional climate model. Meteor. Z., 17 , 433443.

  • Chaboureau, J-P., F. Guichard, J-L. Redelsperger, and J-P. Lafore, 2004: The role of stability and moisture in the diurnal cycle of convection over land. Quart. J. Roy. Meteor. Soc., 130 , 31053117.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., G. B. Bonan, and S. Levis, 2006: Soil moisture feedbacks to precipitation in southern Africa. J. Climate, 19 , 41984206.

  • Della-Marta, P. M., M. R. Haylock, J. Luterbacher, and H. Wanner, 2007a: Doubled length of western European summer heat waves since 1880. J. Geophys. Res., 112 , D15103. doi:10.1029/2007JD008510.

    • Search Google Scholar
    • Export Citation
  • Della-Marta, P. M., J. Luterbacher, H. von Weissenfluh, E. Xoplaki, M. Brunet, and H. Wanner, 2007b: Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Climate Dyn., 29 , 251275.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., R. D. Koster, and Z. C. Guo, 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7 , 11771198.

    • Search Google Scholar
    • Export Citation
  • Doms, G., and J. Förstner, 2004: Development of a kilometer-scale NWP-System: LMK. COSMO Newsletter, No. 4, Deutscher Wetterdienst, Offenbach, Germany, 159–167.

    • Search Google Scholar
    • Export Citation
  • Doms, G., J. Förstner, E. Heise, H-J. Herzog, M. Raschendorfer, R. Schrodin, T. Reinhardt, and G. Vogel, 2005: A description of the nonhydrostatic regional model LM. Research Department, Deutscher Wetterdienst, 139 pp.

    • Search Google Scholar
    • Export Citation
  • Douville, H., and F. Chauvin, 2000: Relevance of soil moisture for seasonal climate predictions: A preliminary study. Climate Dyn., 16 , 719736.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and A. A. M. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5 , 8699.

  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism 1. Theory and observations. Water Resour. Res., 34 , 765776.

  • Entekhabi, I. R-I., and R. L. Bras, 1992: Variability in large-scale water balance with land surface–atmosphere interaction. J. Climate, 5 , 798813.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., and P. Viterbo, 2006: The European summer of 2003: Sensitivity to soil water initial conditions. J. Climate, 19 , 36593680.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 1997: An analysis of the soil moisture–rainfall feedback, based on direct observations from Illinois. Water Resour. Res., 33 , 725735.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4 , 552569.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., E. Shevliakova, P. C. D. Milly, and R. J. Stouffer, 2007: Modeled impact of anthropogenic land cover change on climate. J. Climate, 20 , 36213634.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, D. Lüthi, and C. Schär, 2007a: Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34 , L06707. doi:10.1029/2006GL029068.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007b: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20 , 50815099.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., and M. Segal, 2000: Sensitivity of forecast rainfall in a Texas convective system to soil moisture and convective parameterization. Wea. Forecasting, 15 , 509525.

    • Search Google Scholar
    • Export Citation
  • Guichard, F. M., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130 , 31393172.

    • Search Google Scholar
    • Export Citation
  • Guo, Z. C., and Coauthors, 2006: GLACE: The global land–atmosphere coupling experiment. Part II: Analysis. J. Hydrometeor., 7 , 611625.

    • Search Google Scholar
    • Export Citation
  • Heise, E., B. Ritter, and R. Schrodin, 2006: Operational implementation of the multilayer soil model. Consortium for Small-Scale Modeling (COSMO) Tech. Rep. 9, 20 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/techReports/docs/techReport09.pdf].

    • Search Google Scholar
    • Export Citation
  • Hirschi, M., S. I. Seneviratne, S. Hagemann, and C. Schär, 2007: Analysis of seasonal terrestrial water storage variations in regional climate simulations over Europe. J. Geophys. Res., 112 , D22109. doi:10.1029/2006JD008338.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, and C. Schär, 2008: Towards climate simulations at cloud-resolving scales. Meteor. Z., 17 , 383394.

  • Jacob, D., and Coauthors, 2007: An inter-comparison of regional climate models for Europe: Model performance in present-day climate. Climatic Change, 81 , 3152.

    • Search Google Scholar
    • Export Citation
  • Jaeger, E. B., I. Anders, D. Lüthi, B. Rockel, C. Schär, and S. I. Seneviratne, 2008: Analysis of ERA40-driven CLM simulations for Europe. Meteor. Z., 17 , 349367.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation Models. Meteor. Monogr., No. 10, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, R. W. Higgins, and H. M. Van den Dool, 2003: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett., 30 , 1241. doi:10.1029/2002GL016571.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature Geosci., 1 , 511514.

    • Search Google Scholar
    • Export Citation
  • Mass, C. E., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83 , 407430.

    • Search Google Scholar
    • Export Citation
  • Météo France, cited. 2006: Bilan de l’été 2006. [Available online at http://france.meteofrance.com/france/actu/bilan/archives/2006/ete?page_id=10046].

    • Search Google Scholar
    • Export Citation
  • MeteoSwiss, cited. 2006: Juli 2006: Klimatologisch ein extremer Monat. [Available online at http://www.meteoschweiz.admin.ch/web/de/wetter/wetterereignisse/juli_2006_erste_bilanz.html].

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and E. A. B. Eltahir, 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land–atmosphere system. J. Climate, 14 , 12271242.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and E. A. B. Eltahir, 2003: A feedback mechanism between soil-moisture distribution and storm tracks. Quart. J. Roy. Meteor. Soc., 129 , 22792297.

    • Search Google Scholar
    • Export Citation
  • Pan, Z. T., E. Takle, M. Segal, and R. Turner, 1996: Influences of model parameterization schemes on the response of rainfall to soil moisture in the central United States. Mon. Wea. Rev., 124 , 17861802.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39 , 151177.

    • Search Google Scholar
    • Export Citation
  • Raschendorfer, M., 2001: The new turbulence parameterization of LM. COSMO Newsletter, No. 1, Deutscher Wetterdienst, Offenbach, Germany, 90–98.

    • Search Google Scholar
    • Export Citation
  • Reinhardt, T., and A. Seifert, 2006: A three-category ice scheme for LMK. COSMO Newsletter, No. 6, Deutscher Wetterdienst, Offenbach, Germany, 115–120.

    • Search Google Scholar
    • Export Citation
  • Ritter, B., and J-F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120 , 303325.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., and R. G. Jones, 2006: Causes and uncertainty of future summer drying over Europe. Climate Dyn., 27 , 281299. doi:10.1007/s00382-006-0125-9.

    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Lüthi, U. Beyerle, and E. Heise, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12 , 722741.

    • Search Google Scholar
    • Export Citation
  • Schär, C., P. L. Vidale, D. Lüthi, C. Frei, C. Häberli, M. A. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427 , 332336.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2006a: Soil moisture memory in AGCM simulations: Analysis of Global Land–Atmosphere Coupling Experiment (GLACE) data. J. Hydrometeor., 7 , 10901112.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006b: Land–atmosphere coupling and climate change in Europe. Nature, 443 , 205209.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113 , 899927.

    • Search Google Scholar
    • Export Citation
  • Steppeler, J., G. Doms, U. Schattler, H. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82 , 7596.

    • Search Google Scholar
    • Export Citation
  • Sutton, C., T. M. Hamill, and T. T. Warner, 2006: Will perturbing soil moisture improve warm-season ensemble forecasts? A proof of concept. Mon. Wea. Rev., 134 , 31743189.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., and R. J. Ellis, 2006: Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys. Res. Lett., 33 , L03404. doi:10.1029/2005GL025252.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1996: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9 , 12881298.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., F. Chen, and K. W. Manning, 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132 , 29542976.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2007: Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys. Res. Lett., 34 , L07711. doi:10.1029/2006GL028001.

    • Search Google Scholar
    • Export Citation
  • Vidale, P. L., D. Lüthi, R. Wegmann, and C. Schär, 2007: European summer climate variability in a heterogeneous multi-model ensemble. Climatic Change, 81 , 209232.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K., A. Robock, N. Speranskay, and C. Schlosser, 1996: Scales of temporal and spatial variability of midlatitude soil moisture. J. Geophys. Res., 101 , 71637174.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., and B. Albrecht, 2003: Large eddy simulations of continental shallow cumulus convection. J. Geophys. Res., 108 , 4453. doi:10.1029/2002JD003119.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2058 534 43
PDF Downloads 1744 404 36