Drought in the Southeastern United States: Causes, Variability over the Last Millennium, and the Potential for Future Hydroclimate Change

Richard Seager Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Richard Seager in
Current site
Google Scholar
PubMed
Close
,
Alexandrina Tzanova Columbia College, Columbia University, New York, New York

Search for other papers by Alexandrina Tzanova in
Current site
Google Scholar
PubMed
Close
, and
Jennifer Nakamura Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Jennifer Nakamura in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An assessment of the nature and causes of drought in the southeastern United States is conducted as well as an assessment of model projections of anthropogenically forced hydroclimate change in this region. The study uses observations of precipitation, model simulations forced by historical SSTs from 1856 to 2007, tree-ring records of moisture availability over the last millennium, and climate change projections conducted for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. From the perspective of the historical record, the recent drought that began in winter 2005/06 was a typical event in terms of amplitude and duration. Observations and model simulations are used to show that dry winter half-years in the Southeast are weakly associated with La Niñas in the tropical Pacific but that this link varies over time and was possibly of opposite sign from about 1922 to 1950. Summer-season precipitation variability in the Southeast appears governed by purely internal atmospheric variability. As such, model simulations forced by historical SSTs have very limited skill in reproducing the instrumental record of Southeast precipitation variability and actual predictive skill is also presumably low. Tree-ring records show that the twentieth century has been moist from the perspective of the last millennium and free of long and severe droughts that were abundant in previous centuries. The tree-ring records show a 21-yr-long uninterrupted drought in the mid-sixteenth century, a long period of dry conditions in the early to mid-nineteenth century, and that the Southeast was also affected by some of the medieval megadroughts centered in western North America. Climate model projections predict that in the near term, future precipitation in the Southeast will increase but that evaporation will also increase. The median of the projections predicts a modest reduction in the atmospheric supply of water vapor to the region; however, the multimodel ensemble exhibits considerable variation, with a quarter to a third of the models projecting an increase in precipitation minus evaporation. The recent drought, forced by reduced precipitation and with reduced evaporation, has no signature of model-projected anthropogenic climate change.

Corresponding author address: Dr. Richard Seager, Lamont-Doherty Earth Observatory, Columbia University, Rt. 9W, Palisades, NY 10964. Email: seager@ldeo.columbia.edu

Abstract

An assessment of the nature and causes of drought in the southeastern United States is conducted as well as an assessment of model projections of anthropogenically forced hydroclimate change in this region. The study uses observations of precipitation, model simulations forced by historical SSTs from 1856 to 2007, tree-ring records of moisture availability over the last millennium, and climate change projections conducted for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. From the perspective of the historical record, the recent drought that began in winter 2005/06 was a typical event in terms of amplitude and duration. Observations and model simulations are used to show that dry winter half-years in the Southeast are weakly associated with La Niñas in the tropical Pacific but that this link varies over time and was possibly of opposite sign from about 1922 to 1950. Summer-season precipitation variability in the Southeast appears governed by purely internal atmospheric variability. As such, model simulations forced by historical SSTs have very limited skill in reproducing the instrumental record of Southeast precipitation variability and actual predictive skill is also presumably low. Tree-ring records show that the twentieth century has been moist from the perspective of the last millennium and free of long and severe droughts that were abundant in previous centuries. The tree-ring records show a 21-yr-long uninterrupted drought in the mid-sixteenth century, a long period of dry conditions in the early to mid-nineteenth century, and that the Southeast was also affected by some of the medieval megadroughts centered in western North America. Climate model projections predict that in the near term, future precipitation in the Southeast will increase but that evaporation will also increase. The median of the projections predicts a modest reduction in the atmospheric supply of water vapor to the region; however, the multimodel ensemble exhibits considerable variation, with a quarter to a third of the models projecting an increase in precipitation minus evaporation. The recent drought, forced by reduced precipitation and with reduced evaporation, has no signature of model-projected anthropogenic climate change.

Corresponding author address: Dr. Richard Seager, Lamont-Doherty Earth Observatory, Columbia University, Rt. 9W, Palisades, NY 10964. Email: seager@ldeo.columbia.edu

Save
  • Allan, R. J., and T. J. Ansell, 2006: A new globally complete monthly historical mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19 , 58165842.

    • Search Google Scholar
    • Export Citation
  • Alley, W. M., 1984: The Palmer drought severity index: Limitations and assumptions. J. Climate Appl. Meteor., 23 , 11001109.

  • AMS Council, 1997: Policy statement: Meteorological drought. Bull. Amer. Meteor. Soc., 78 , 847849.

  • Andreadis, K. M., and D. P. Lettenmaier, 2006: Trends in 20th century drought over the continental United States. Geophys. Res. Lett., 33 , L10403. doi:10.1029/2006GL025711.

    • Search Google Scholar
    • Export Citation
  • Burke, E. J., S. J. Brown, and N. Christidis, 2006: Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J. Hydrometeor., 7 , 11131125.

    • Search Google Scholar
    • Export Citation
  • Cobb, K., C. D. Charles, H. Cheng, and R. L. Edwards, 2003: El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424 , 271276.

    • Search Google Scholar
    • Export Citation
  • Cocke, S., T. E. LaRow, and D. W. Shin, 2007: Seasonal rainfall predictions over the southeast United States using the Florida State University nested regional model. J. Geophys. Res., 112 , D04106. doi:10.1029/2006JD007535.

    • Search Google Scholar
    • Export Citation
  • Cole, J. E., and E. R. Cook, 1998: The changing relationship between ENSO variability and moisture balance in the continental United States. Geophys. Res. Lett., 25 , 45294532.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., and P. J. Krusic, 2004: North American summer PDSI reconstructions. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series Tech. Rep. 2004-045, 24 pp.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., C. Woodhouse, C. M. Eakin, D. M. Meko, and D. W. Stahle, 2004: Long-term aridity changes in the western United States. Science, 306 , 10151018.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., R. Seager, M. A. Cane, and D. W. Stahle, 2007: North American droughts: Reconstructions, causes and consequences. Earth Sci. Rev., 81 , 93134.

    • Search Google Scholar
    • Export Citation
  • Fye, F. K., D. W. Stahle, and E. R. Cook, 2003: Paleoclimatic analogs to twentieth-century moisture regimes across the United States. Bull. Amer. Meteor. Soc., 84 , 901909.

    • Search Google Scholar
    • Export Citation
  • Fye, F. K., D. W. Stahle, and E. R. Cook, 2004: Twentieth-century sea surface temperature patterns in the Pacific during decadal moisture regimes over the United States. Earth Interactions, 8 .[Available online at http://EarthInteractions.org].

    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and T. P. Barnett, 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79 , 27152725.

  • Gershunov, A., N. Schneider, and T. P. Barnett, 2001: Low-frequency modulation of the ENSO–Indian monsoon rainfall relationship: Signal or noise? J. Climate, 14 , 24862492.

    • Search Google Scholar
    • Export Citation
  • Graham, N., and Coauthors, 2007: Tropical Pacific – mid-latitude teleconnections in medieval times. Climatic Change, 83 , 241285.

  • Heim, R. R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83 , 11491165.

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19 , 56865699.

  • Herweijer, C., R. Seager, and E. R. Cook, 2006: North American droughts of the mid to late nineteenth century: A history, simulation and implication for Mediaeval drought. Holocene, 16 , 159171.

    • Search Google Scholar
    • Export Citation
  • Herweijer, C., R. Seager, E. R. Cook, and J. Emile-Geay, 2007: North American droughts of the last millennium from a gridded network of tree-ring data. J. Climate, 20 , 13531376.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and A. Kumar, 2003: The perfect ocean for drought. Science, 299 , 691694.

  • Houghton, J. T., G. J. Jenkins, and J. J. Ephraums, 2007: Climate Change: The IPCC Scientific Assessment. Cambridge University Press, 365 pp.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78 , 520.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature: 1856–1991. J. Geophys. Res., 103 , 1856718589.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., 1986: The sensitivity of the Palmer drought severity index and Palmer’s Z-index to their calibration coefficients including potential evapotranspiration. J. Climate Appl. Meteor., 25 , 7786.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., A. Ruiz-Barradas, S. Nigam, and A. J. Busalacchi, 2008: North American droughts in ERA-40 global and NCEP North American Regional Reanalyses: A Palmer drought severity index perspective. J. Climate, 21 , 21022123.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Kurtzman, D., and B. R. Scanlon, 2007: El Niño–Southern Oscillation and Pacific Decadal Oscillation impacts on precipitation in the southern and central United States: Evaluation of spatial distributions and predictions. Water Resour. Res., 43 , W10427. doi:10.1029/2007WR005863.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 1994: A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system. J. Climate, 7 , 11841207.

    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for GCMs. J. Geophys. Res., 99 , 1441514428.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78 , 10691079.

    • Search Google Scholar
    • Export Citation
  • Manuel, J., 2008: Drought in the Southeast: Lessons for Water Management. Environ. Health Perspect., 116 , A168A171.

  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101 , 41364141.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., K. A. Dunne, and A. V. Vecchia, 2005: Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438 , 347350.

    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological drought. U.S. Weather Bureau Research Paper 45, 58 pp.

  • Rayner, N., D. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114 , 23522362.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2 , 268284.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1996: Quantifying Southern Oscillation–precipitation relationships. J. Climate, 9 , 10431059.

  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004a: Causes of long-term drought in the United States Great Plains. J. Climate, 17 , 485503.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004b: On the cause of the 1930s Dust Bowl. Science, 303 , 18551859.

    • Search Google Scholar
    • Export Citation
  • Seager, R., 2007: The turn of the century North American drought: Global context, dynamics, and past analogs. J. Climate, 20 , 55275552.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16 , 29602978.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, W. A. Robinson, Y. Kushnir, M. Ting, H. P. Huang, and J. Velez, 2005a: Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Quart. J. Roy. Meteor. Soc., 131 , 15011527.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005b: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18 , 40684091.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Graham, C. Herweijer, A. Gordon, Y. Kushnir, and E. R. Cook, 2007a: Blueprints for Medieval hydroclimate. Quat. Sci. Rev., 26 , 23222336.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007b: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316 , 11811184.

    • Search Google Scholar
    • Export Citation
  • Seager, R., R. Burgman, Y. Kushnir, A. C. Clement, E. R. Cook, N. Naik, and J. Miller, 2008a: Tropical Pacific forcing of North American medieval megadroughts: Testing the concept with an atmosphere model forced by coral-reconstructed SSTs. J. Climate, 21 , 61756190.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, M. Ting, M. A. Cane, N. Naik, and J. Velez, 2008b: Would advance knowledge of 1930s SSTs have allowed prediction of the Dust Bowl drought? J. Climate, 21 , 32613281.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2009: Mexican drought: An observational modeling and tree ring study of variability and climate change. Atmósfera, 22 , 131.

    • Search Google Scholar
    • Export Citation
  • Stahle, D. W., E. R. Cook, M. K. Cleaveland, M. D. Therrell, D. Meko, H. Grissino-Mayer, E. Watson, and B. H. Luckman, 2000: Tree-ring data document 16th century megadrought over North America. EOS, Trans. Amer. Geophys. Union, 81 , 121.

    • Search Google Scholar
    • Export Citation
  • Stahle, D. W., F. K. Fye, E. R. Cook, and R. D. Griffin, 2007: Tree-ring reconstructed megadroughts over North America since a.d. 1300. Climatic Change, 83 , 133149.

    • Search Google Scholar
    • Export Citation
  • Tootle, G. A., and T. C. Piechota, 2006: Relationships between Pacific and Atlantic ocean sea surface temperatures and U.S. streamflow variability. Water Resour. Res., 42 , W07411. doi:10.1029/2005WR004184.

    • Search Google Scholar
    • Export Citation
  • van der Schrier, G., K. R. Briffa, T. J. Osborn, and E. R. Cook, 2006: Summer moisture variability across North America. J. Geophys. Res., 111 , D11102. doi:10.1029/2005JD006745.

    • Search Google Scholar
    • Export Citation
  • Wu, A., W. W. Hsieh, and A. Shabbar, 2005: The nonlinear patterns of North American winter temperature and precipitation associated with ENSO. J. Climate, 18 , 17361752.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2835 917 208
PDF Downloads 1386 257 39