Rainfall Teleconnections with Indo-Pacific Variability in the WCRP CMIP3 Models

Wenju Cai CSIRO Marine and Atmospheric Research, Aspendale, Victoria, and Wealth from Oceans National Research Flagship, CSIRO, North Ryde, New South Wales, Australia

Search for other papers by Wenju Cai in
Current site
Google Scholar
PubMed
Close
,
Arnold Sullivan CSIRO Marine and Atmospheric Research, Aspendale, Victoria, and Wealth from Oceans National Research Flagship, CSIRO, North Ryde, New South Wales, Australia

Search for other papers by Arnold Sullivan in
Current site
Google Scholar
PubMed
Close
, and
Tim Cowan CSIRO Marine and Atmospheric Research, Aspendale, Victoria, and Wealth from Oceans National Research Flagship, CSIRO, North Ryde, New South Wales, Australia

Search for other papers by Tim Cowan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study assesses the ability of climate models to simulate rainfall teleconnections with the El Niño–Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD). An assessment is provided on 24 climate models that constitute phase 3 of the World Climate Research Programme’s Coupled Model Intercomparison Project (WCRP CMIP3), used in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC).

The strength of the ENSO–rainfall teleconnection, defined as the correlation between rainfall and Niño-3.4, is overwhelmingly controlled by the amplitude of ENSO signals relative to stochastic noise, highlighting the importance of realistically simulating this parameter. Because ENSO influences arise from the movement of convergence zones from their mean positions, the well-known equatorial Pacific climatological sea surface temperature (SST) and ENSO cold tongue anomaly biases lead to systematic errors. The climatological SSTs, which are far too cold along the Pacific equator, lead to a complete “nonresponse to ENSO” along the central and/or eastern equatorial Pacific in the majority of models. ENSO anomalies are also too equatorially confined and extend too far west, with linkages to a weakness in the teleconnection with Hawaii boreal winter rainfall and an inducement of a teleconnection with rainfall over west Papua New Guinea in austral summer. Another consequence of the ENSO cold tongue bias is that the majority of models produce too strong a coherence between SST anomalies in the west, central, and eastern equatorial Pacific. Consequently, the models’ ability in terms of producing differences in the impacts by ENSO from those by ENSO Modoki is reduced.

Similarly, the IOD–rainfall teleconnection strengthens with an intensification of the IOD relative to the stochastic noise. A significant relationship exists between intermodel variations of IOD–ENSO coherence and intermodel variations of the ENSO amplitude in a small subset of models in which the ENSO anomaly structure and ENSO signal transmission to the Indian Ocean are better simulated. However, using all but one model (defined as an outlier) there is no systematic linkage between ENSO amplitude and IOD–ENSO coherence. Indeed, the majority of models produce an ENSO–IOD coherence lower than the observed, supporting the notion that the Indian Ocean has the ability to generate independent variability and that ENSO is not the only trigger of the IOD. Although models with a stronger IOD amplitude and rainfall teleconnection tend to have a greater ENSO amplitude, there is no causal relationship; instead this feature reflects a commensurate strength of the Bjerknes feedback in both the Indian and Pacific Oceans.

Corresponding author address: Dr. Wenju Cai, 107-121 Station St., Aspendale, VIC 3195, Australia. Email: wenju.cai@csiro.au

Abstract

The present study assesses the ability of climate models to simulate rainfall teleconnections with the El Niño–Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD). An assessment is provided on 24 climate models that constitute phase 3 of the World Climate Research Programme’s Coupled Model Intercomparison Project (WCRP CMIP3), used in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC).

The strength of the ENSO–rainfall teleconnection, defined as the correlation between rainfall and Niño-3.4, is overwhelmingly controlled by the amplitude of ENSO signals relative to stochastic noise, highlighting the importance of realistically simulating this parameter. Because ENSO influences arise from the movement of convergence zones from their mean positions, the well-known equatorial Pacific climatological sea surface temperature (SST) and ENSO cold tongue anomaly biases lead to systematic errors. The climatological SSTs, which are far too cold along the Pacific equator, lead to a complete “nonresponse to ENSO” along the central and/or eastern equatorial Pacific in the majority of models. ENSO anomalies are also too equatorially confined and extend too far west, with linkages to a weakness in the teleconnection with Hawaii boreal winter rainfall and an inducement of a teleconnection with rainfall over west Papua New Guinea in austral summer. Another consequence of the ENSO cold tongue bias is that the majority of models produce too strong a coherence between SST anomalies in the west, central, and eastern equatorial Pacific. Consequently, the models’ ability in terms of producing differences in the impacts by ENSO from those by ENSO Modoki is reduced.

Similarly, the IOD–rainfall teleconnection strengthens with an intensification of the IOD relative to the stochastic noise. A significant relationship exists between intermodel variations of IOD–ENSO coherence and intermodel variations of the ENSO amplitude in a small subset of models in which the ENSO anomaly structure and ENSO signal transmission to the Indian Ocean are better simulated. However, using all but one model (defined as an outlier) there is no systematic linkage between ENSO amplitude and IOD–ENSO coherence. Indeed, the majority of models produce an ENSO–IOD coherence lower than the observed, supporting the notion that the Indian Ocean has the ability to generate independent variability and that ENSO is not the only trigger of the IOD. Although models with a stronger IOD amplitude and rainfall teleconnection tend to have a greater ENSO amplitude, there is no causal relationship; instead this feature reflects a commensurate strength of the Bjerknes feedback in both the Indian and Pacific Oceans.

Corresponding author address: Dr. Wenju Cai, 107-121 Station St., Aspendale, VIC 3195, Australia. Email: wenju.cai@csiro.au

Save
  • AchutaRao, K., and K. Sperber, 2002: Simulation of the El Niño Southern Oscillation: Results from the Coupled Model Intercomparison Project. Climate Dyn., 19 , 191209.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lazante, N-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., K. Hamilton, and K. R. Sperber, 2007: The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Climate, 20 , 10711092.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2001: Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett., 28 (23) 44994502.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys. Res. Lett., 30 , 1821. doi:10.1029/2003GL017926.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112 , C11007. doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Ashrit, R. G., H. Douville, and K. Rupakumar, 2003: Response of Indian monsoon and ENSO-monsoon teleconnection to enhanced greenhouse effect in the CNRM coupled model. J. Meteor. Soc. Japan, 81 , 779803.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J. J. Luo, S. Masson, P. Delecluse, S. Gualdi, and A. Navarra, 2005: Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Climate, 18 , 45144530.

    • Search Google Scholar
    • Export Citation
  • Black, E., J. Slingo, and K. R. Sperber, 2003: An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon. Wea. Rev., 131 , 7494.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and P. H. Whetton, 2001: A time-varying greenhouse warming pattern and the tropical–extratropical circulation linkage in the Pacific Ocean. J. Climate, 14 , 33373355.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2006: The SAM and regional rainfall in IPCC AR4 models: Can anthropogenic forcing account for southwest Western Australian rainfall reduction. Geophys. Res. Lett., 33 , L24708. doi:10.1029/2006GL028037.

    • Search Google Scholar
    • Export Citation
  • Cai, W., M. A. Collier, H. B. Gordon, and L. J. Waterman, 2003: Strong ENSO variability and a super-ENSO pair in the CSIRO Mark 3 coupled climate model. Mon. Wea. Rev., 131 , 11891210.

    • Search Google Scholar
    • Export Citation
  • Cai, W., H. H. Hendon, and G. Meyers, 2005: Indian Ocean dipole-like variability in the CSIRO Mark 3 coupled climate model. J. Climate, 18 , 14491468.

    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Sullivan, and T. Cowan, 2008: Shoaling of the off-equatorial south Indian Ocean thermocline: Is it driven by anthropogenic forcing? Geophys. Res. Lett., 35 , L12711. doi:10.1029/2008GL034174.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and X. Liu, 1994: Interannual sea level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24 , 12241235.

  • Collins, M., 2005: El Niño- or La Niña-like climate change? Climate Dyn., 24 , 89104.

  • Davey, M. K., and Coauthors, 2002: STOIC: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18 , 403420.

    • Search Google Scholar
    • Export Citation
  • Fischer, A., P. Terray, E. Guilyardi, S. Gualdi, and P. Delecluse, 2005: Two independent triggers for the Indian Ocean dipole zonal mode in a coupled GCM. J. Climate, 18 , 34283449.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., 1975: On ocean spindown I: A linear experiment. J. Phys. Oceanogr., 5 , 399409.

  • Guilyardi, E., 2006: El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26 , 329348. doi:10.1007/s00382-005-0084-6.

    • Search Google Scholar
    • Export Citation
  • Joseph, R., and S. Nigam, 2006: ENSO evolution and teleconnection in IPCC’s twentieth-century climate simulations: Realistic representation? J. Climate, 19 , 43604377.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12 , 917932.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 2001: ENSIP: The El Niño simulation intercomparison project. Climate Dyn., 18 , 255276.

  • Lau, N-C., and M. J. Nath, 2004: Coupled GCM simulation of atmosphere–ocean variability associated with the zonally asymmetric SST changes in the tropical Indian Ocean. J. Climate, 17 , 245265.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20 , 44974525.

  • Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45 , RG2005. doi:10.1029/2005RG000172.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21 , 58355851.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and N. Nicholls, 1983: Seasonal relationships between Australian rainfall and the Southern Oscillation. Mon. Wea. Rev., 111 , 19982004.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123 , 28252838.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and W. M. Washington, 1996: El Niño-like climate change in a model with increased atmospheric CO2 concentration. Nature, 382 , 5660.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, B. McAvaney, M. Latif, and R. J. Stouffer, 2005: Overview of the Coupled Model Intercomparison Project. Bull. Amer. Meteor. Soc., 86 , 8993.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R. G., J. P. McCreary, and A. J. Busalacchi, 2000: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J. Geophys. Res., 105 , 32953306.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 289 pp.

  • Potemra, J. T., 2001: The potential role of equatorial Pacific winds on southern tropical Indian Ocean Rossby waves. J. Geophys. Res., 106 , 24072422.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with high index phase of Southern Oscillation. J. Climate, 2 , 268284.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003a: Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res., 25 , 151169.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003b: Structure of SST and surface wind variability during Indian Ocean dipole mode years: COADS observations. J. Climate, 16 , 27352751.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 , 360363.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., S-P. Xie, and T. Yamagata, 2006: Tropical Indian Ocean variability in the IPCC twentieth-century climate simulations. J. Climate, 19 , 43974417.

    • Search Google Scholar
    • Export Citation
  • Scaife, A., and Coauthors, 2008: The CLIVAR C20C Project: Selected twentieth century climate events. Climate Dyn., 31 .doi:10.1007/s00382-008-0451-1.

    • Search Google Scholar
    • Export Citation
  • Shi, G., J. Ribbe, W. Cai, and T. Cowan, 2007: Multidecadal variability in the transmission of ENSO signals to the Indian Ocean. Geophys. Res. Lett., 34 , L09706. doi:10.1029/2007GL029528.

    • Search Google Scholar
    • Export Citation
  • Shi, G., W. Cai, T. Cowan, J. Ribbe, L. Rotstayn, and M. Dix, 2008a: Variability and trend of the northwest Western Australia rainfall: Observations and coupled climate modeling. J. Climate, 21 , 29382959.

    • Search Google Scholar
    • Export Citation
  • Shi, G., J. Ribbe, W. Cai, and T. Cowan, 2008b: An interpretation of Australian rainfall projections. Geophys. Res. Lett., 35 , L02702. doi:10.1029/2007GL032436.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and M. A. Alexander, 2004: Surface and subsurface dipole variability in the Indian Ocean and its relation with ENSO. Deep-Sea Res., 51 , 619635.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and D. A. Paolino, 1983: The Southern Oscillation and long-range forecasting of summer monsoon rainfall over India. Mon. Wea. Rev., 111 , 18301837.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A. J., J. Oberhuber, A. Bacher, M. Esch, M. Latif, and E. Roeckner, 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398 , 694697.

    • Search Google Scholar
    • Export Citation
  • Turner, A. G., P. M. Inness, and J. M. Slingo, 2005: The role of the basic state in the ENSO-monsoon relationship and implications for predictability. Quart. J. Roy. Meteor. Soc., 131 , 781804.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., and D. Shea, 1985: The Southern Oscillation. Part IV: The precursors south of 15°S to the extremes of the oscillation. Mon. Wea. Rev., 113 , 20632074.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., S. Y. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1 , 8195.

  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441 , 7376. doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Wang, G., and H. Hendon, 2007: Sensitivity of Australian rainfall to inter–El Niño variations. J. Climate, 20 , 42114226.

  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401 , 356360.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S., and G. Meyers, 2004: An intersection of oceanic waveguides: Variability in the Indonesian Throughflow region. J. Phys. Oceanogr., 34 , 12321253.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15 , 864878.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., S. K. Behera, J. J. Luo, S. Masson, M. R. Jury, and S. A. Rao, 2004: Coupled ocean–atmosphere variability in the tropical Indian Ocean. Earth Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 189–212.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J. Climate, 7 , 17191736.

    • Search Google Scholar
    • Export Citation
  • Zubair, L., S. A. Rao, and T. Yamagata, 2003: Modulation of Sri Lankan Maha rainfall by the Indian Ocean dipole. Geophys. Res. Lett., 30 , 1063. doi:10.1029/2002GL015639.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 449 92 8
PDF Downloads 279 62 6