Attribution of Seasonal and Regional Changes in Arctic Moisture Convergence

Natasa Skific Department of Atmospheric Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Natasa Skific in
Current site
Google Scholar
PubMed
Close
,
Jennifer A. Francis Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Jennifer A. Francis in
Current site
Google Scholar
PubMed
Close
, and
John J. Cassano Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Search for other papers by John J. Cassano in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Spatial and temporal changes in high-latitude moisture convergence simulated by the National Center for Atmospheric Research Community Climate System Model, version 3 (CCSM3) are investigated. Moisture convergence is calculated using the aerological method with model fields of specific humidity and winds spanning the periods from 1960 to 1999 and 2070 to 2089. The twenty-first century incorporates the A2 scenario from the Special Report on Emissions Scenarios. The model’s realism in reproducing the twentieth-century moisture convergence is evaluated by comparison with values derived from the 40-yr ECMWF Re-Analysis (ERA-40). In the area north of 75°N, the simulated moisture convergence is similar to observations during summer, but it is larger in winter, spring, and autumn. The model also underestimates (overestimates) the mean annual moisture convergence in the eastern (western) Arctic. Late twenty-first century annual, seasonal, and regional changes are determined by applying a self-organizing map technique to the model’s sea level pressure fields to identify dominant atmospheric circulation regimes and their corresponding moisture convergence fields. Changes in moisture convergence from the twentieth to the twenty-first century result primarily from thermodynamic effects (∼70%), albeit shifts in the frequency of dominant circulation patterns exert a relatively large influence on future changes in the eastern Arctic. Increased moisture convergence in the central Arctic (North Atlantic) stems mainly from thermodynamic changes in summer (winter). Changes in the strength and location of poleward moisture gradients are most likely responsible for projected variations in moisture transport, which are in turn a consequence of increasing anthropogenic greenhouse gas emissions as prescribed by the A2 scenario.

Corresponding author address: Dr. Jennifer Francis, IMCS, 71 Dudley Rd., New Brunswick, NJ 08901. Email: francis@imcs.rutgers.edu

Abstract

Spatial and temporal changes in high-latitude moisture convergence simulated by the National Center for Atmospheric Research Community Climate System Model, version 3 (CCSM3) are investigated. Moisture convergence is calculated using the aerological method with model fields of specific humidity and winds spanning the periods from 1960 to 1999 and 2070 to 2089. The twenty-first century incorporates the A2 scenario from the Special Report on Emissions Scenarios. The model’s realism in reproducing the twentieth-century moisture convergence is evaluated by comparison with values derived from the 40-yr ECMWF Re-Analysis (ERA-40). In the area north of 75°N, the simulated moisture convergence is similar to observations during summer, but it is larger in winter, spring, and autumn. The model also underestimates (overestimates) the mean annual moisture convergence in the eastern (western) Arctic. Late twenty-first century annual, seasonal, and regional changes are determined by applying a self-organizing map technique to the model’s sea level pressure fields to identify dominant atmospheric circulation regimes and their corresponding moisture convergence fields. Changes in moisture convergence from the twentieth to the twenty-first century result primarily from thermodynamic effects (∼70%), albeit shifts in the frequency of dominant circulation patterns exert a relatively large influence on future changes in the eastern Arctic. Increased moisture convergence in the central Arctic (North Atlantic) stems mainly from thermodynamic changes in summer (winter). Changes in the strength and location of poleward moisture gradients are most likely responsible for projected variations in moisture transport, which are in turn a consequence of increasing anthropogenic greenhouse gas emissions as prescribed by the A2 scenario.

Corresponding author address: Dr. Jennifer Francis, IMCS, 71 Dudley Rd., New Brunswick, NJ 08901. Email: francis@imcs.rutgers.edu

Save
  • ACIA, 2005: Impacts of a Warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press, 144 pp.

  • Alexander, M., and Coauthors, 2006: Extratropical atmosphere–ocean variability in CCSM3. J. Climate, 19 , 24962525.

  • Ammann, C. M., G. A. Meehl, W. M. Washington, and C. S. Zender, 2003: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett., 30 , 1657. doi:10.1029/2003GL016875.

    • Search Google Scholar
    • Export Citation
  • Armstrong, R., M. J. Brodzik, and A. Varani, 1997: The NSIDC EASE-Grid: Addressing the need for a common, flexible, mapping and gridding scheme. Earth System Monitor, Vol. 7, 3 pp.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., 2000: Offset of the potential sink from boreal forestation by decreases in surface albedo. Nature, 408 , 187190.

  • Cassano, J. J., P. Uotila, and A. H. Lynch, 2006: Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries. Part 1: Arctic. Int. J. Climatol., 26 , 10271049.

    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., P. Uotila, A. H. Lynch, and E. N. Cassano, 2007: Predicted changes in synoptic forcing of net precipitation in large Arctic river basins during the 21st century. J. Geophys. Res., 112 , G04S49. doi:10.1029/2006JG000332.

    • Search Google Scholar
    • Export Citation
  • Chapin III, F. S., and Coauthors, 2005: Role of land-surface changes in Arctic summer warming. Science, 310 , 657660.

  • Chapman, W. L., and J. E. Walsh, 2007: Simulations of Arctic surface temperature and sea level pressure by global coupled models. J. Climate, 20 , 609632.

    • Search Google Scholar
    • Export Citation
  • Cherry, J. E., L. B. Tremblay, M. Stieglitz, G. Gong, and S. J. Déry, 2007: Development of the pan-Arctic snowfall reconstruction: New land-based solid precipitation estimates for 1940–99. J. Hydrometeor., 8 , 12431263.

    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., D. H. Bromwich, and M. C. Serreze, 2000: The atmospheric hydrologic cycle over the Arctic basin from reanalyses. Part I: Comparisons with observations and previous studies. J. Climate, 13 , 923937.

    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32 , L17706.

    • Search Google Scholar
    • Export Citation
  • Finnis, J., M. M. Holland, M. C. Serreze, and J. J. Cassano, 2007: Response of Northern Hemisphere extratropical cyclone activity and associated precipitation to climate change, as represented by the Community Climate System Model. J. Geophys. Res., 112 , G04S42. doi:10.1029/2006JG000286.

    • Search Google Scholar
    • Export Citation
  • Finnis, J., J. Cassano, M. Holland, M. Serreze, and P. Uotila, 2009a: Synoptically forced hydroclimatology of major Arctic watersheds in general circulation models. Part 1: The Mackenzie River basin. Int. J. Climatol., 29 , 12261243.

    • Search Google Scholar
    • Export Citation
  • Finnis, J., J. Cassano, M. Holland, M. Serreze, and P. Uotila, 2009b: Synoptically forced hydroclimatology of major Arctic watersheds in general circulation models. Part 2: Eurasian watersheds. Int. J. Climatol., 29 , 12441261.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and E. Hunter, 2007: Changes in the fabric of the Arctic’s greenhouse blanket. Environ. Res. Lett., 2 , 045011. doi:10.1088/1748-9326/2/4/045011.

    • Search Google Scholar
    • Export Citation
  • Groves, D., and J. A. Francis, 2002: Moisture budget of the Arctic atmosphere from TOVS satellite data. J. Geophys. Res., 107 , 4391. doi:10.1029/2001JD001191.

    • Search Google Scholar
    • Export Citation
  • Hewitson, B. C., and R. G. Crane, 2002: Self-organizing maps: Applications to synoptic climatology. Climate Res., 22 , 1326.

  • Kiehl, J., T. Schneider, R. Portmann, and S. Solomon, 1999: Climate forcing due to tropospheric and stratospheric ozone. J. Geophys. Res., 104 , 3123931254.

    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 2001: Self-Organizing Maps. 3rd ed. Springer-Verlag, 501 pp.

  • Lawrence, D. M., and A. G. Slater, 2005: A projection of severe near-surface permafrost degradation during the 21st century. Geophys. Res. Lett., 32 , L24401. doi:10.1029/2005GL025080.

    • Search Google Scholar
    • Export Citation
  • Lean, J. L., Y-M. Wang, and N. R. Sheeley Jr., 2002: The effect of increasing solar activity on the Sun’s total and open magnetic flux during multiple cycles: Implications for solar forcing of climate. Geophys. Res. Lett., 29 , 2224. doi:10.1029/2002GL015880.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1994: Multiple-century response of a coupled ocean–atmosphere model to an increase of atmospheric carbon dioxide. J. Climate, 7 , 523.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1995: Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature, 378 , 165167.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1997: Coupled ocean–atmosphere model response to freshwater input: Comparison to Younger Dryas event. Paleoceanography, 12 , 321336.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4 , 785818.

    • Search Google Scholar
    • Export Citation
  • Mekis, É, and William D. Hogg, 1999: Rehabilitation and analysis of Canadian daily precipitation time series. Atmos.–Ocean, 37 , 5385.

    • Search Google Scholar
    • Export Citation
  • Min, S. K., X. Zhang, and F. Zwiers, 2008: Human-induced Arctic moistening. Science, 320 , 518520.

  • Nakicenovic, N., and R. Swart, 2000: Intergovernmental Panel on Climate Change Special Report on Emission Scenarios. Cambridge University Press, 570 pp.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., A. Cazenave, J. A. Church, J. A. Hansen, R. F. Keeling, D. E. Parker, and R. J. Somerville, 2007: Recent climate observations compared to projections. Science, 316 , 709.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and B. A. Kunkel, 1960: The Arctic circulation in the summer. J. Meteor., 17 , 489506.

  • Reusch, D., R. Alley, and B. Heitson, 2005: Relative performance of self organizing maps and principal component analysis pattern extraction from synthetic climatological data. Polar Geogr., 29 , 188212.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., R. W. Lindsay, S. Vavrus, and J. A. Francis, 2008: Relationships between Arctic sea ice and clouds during autumn. J. Climate, 21 , 47994810.

    • Search Google Scholar
    • Export Citation
  • Serreze, M., and R. G. Barry, 2005: The Arctic Climate System. Cambridge University Press, 385 pp.

  • Serreze, M., and J. A. Francis, 2006: The Arctic on the fast track of change. Weather, 61 , 6569.

  • Serreze, M., A. P. Barrett, and F. Lo, 2005: Northern high-latitude precipitation as depicted by atmospheric reanalyses and satellite retrievals. Mon. Wea. Rev., 133 , 34073430.

    • Search Google Scholar
    • Export Citation
  • Serreze, M., and Coauthors, 2006: The large-scale freshwater cycle of the Arctic. J. Geophys. Res., 111 , C11010. doi:10.1029/2005JC003424.

    • Search Google Scholar
    • Export Citation
  • Skific, N., J. A. Francis, and J. J. Cassano, 2009: Attribution of projected changes in atmospheric moisture transport in the Arctic: A self-organizing map perspective. J. Climate, 22 , 41354153.

    • Search Google Scholar
    • Export Citation
  • Smith, S. J., H. M. Pitcher, and T. M. L. Wigley, 2001: Global and regional anthropogenic sulfur dioxide emissions. Global Planet. Change, 29 , 99119.

    • Search Google Scholar
    • Export Citation
  • Smith, S. J., H. M. Pitcher, and T. M. L. Wigley, 2005: Future sulfur dioxide emissions. Climatic Change, 73 , 267318.

  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds. 2007: Climate Change 2007: The Physical Sciences Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. D. Ellis, 2008: Controls of global-mean precipitation increases in global warming GCM experiments. J. Climate, 21 , 61416155.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Yang, D., 1999: An improved precipitation climatology for the Arctic Ocean. Geophys. Res. Lett., 26 , 16251628.

  • Yang, D., and T. Ohata, 2001: A bias-corrected Siberian regional precipitation climatology. J. Hydrometeor., 2 , 122139.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 999 796 243
PDF Downloads 216 55 6