Maintenance of Lower Tropospheric Temperature Inversion in the Saharan Air Layer by Dust and Dry Anomaly

Sun Wong Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Sun Wong in
Current site
Google Scholar
PubMed
Close
,
Andrew E. Dessler Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Andrew E. Dessler in
Current site
Google Scholar
PubMed
Close
,
Natalie M. Mahowald Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by Natalie M. Mahowald in
Current site
Google Scholar
PubMed
Close
,
Ping Yang Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Ping Yang in
Current site
Google Scholar
PubMed
Close
, and
Qian Feng Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Qian Feng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The role of Saharan dust and dry anomaly in maintaining the temperature inversion in the Saharan air layer (SAL) is investigated. The dust aerosol optical thickness (AOT) in the SAL is inferred from the measurements taken by Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), and the corresponding temperature and specific humidity anomalies are identified using the National Centers for Environmental Prediction (NCEP) data in August–September over the North Atlantic tropical cyclone (TC) main development region (MDR; 10°–20°N, 40°–60°W). The authors also study the SAL simulated in the National Center of Atmospheric Research (NCAR) Community Atmosphere Model, version 3 (CAM3), coupled with dust radiative effect. It is found that higher AOT is associated with warmer and dryer anomalies below 700 hPa, which increases the atmospheric stability. The calculated instantaneous radiative heating anomalies from a radiative transfer model indicate that both the dust and low humidity are essential to maintaining the temperature structure in the SAL against thermal relaxation. At 850 hPa, heating anomalies caused by both the dust and dry anomalies (for AOT > 0.8) are 0.2–0.4 K day−1. The dust heats the atmosphere below 600 hPa, while the dry anomaly cools the atmosphere below 925 hPa, resulting in a peak of heating rate anomaly located at 700–850 hPa. In the eastern Atlantic, dust contributes about 50% of the heating rate anomaly. Westward of 40°W, when the dust content becomes small (AOT < 0.6), the heating rates are more sensitive to the water vapor profile used in the radiative transfer calculation. Retrieving or simulating correct water vapor profiles is essential to the assessment of the SAL heating budgets in regions where the dust content in the SAL is small.

Corresponding author address: Sun Wong, Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77840-3150. Email: swong@neo.tamu.edu

Abstract

The role of Saharan dust and dry anomaly in maintaining the temperature inversion in the Saharan air layer (SAL) is investigated. The dust aerosol optical thickness (AOT) in the SAL is inferred from the measurements taken by Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), and the corresponding temperature and specific humidity anomalies are identified using the National Centers for Environmental Prediction (NCEP) data in August–September over the North Atlantic tropical cyclone (TC) main development region (MDR; 10°–20°N, 40°–60°W). The authors also study the SAL simulated in the National Center of Atmospheric Research (NCAR) Community Atmosphere Model, version 3 (CAM3), coupled with dust radiative effect. It is found that higher AOT is associated with warmer and dryer anomalies below 700 hPa, which increases the atmospheric stability. The calculated instantaneous radiative heating anomalies from a radiative transfer model indicate that both the dust and low humidity are essential to maintaining the temperature structure in the SAL against thermal relaxation. At 850 hPa, heating anomalies caused by both the dust and dry anomalies (for AOT > 0.8) are 0.2–0.4 K day−1. The dust heats the atmosphere below 600 hPa, while the dry anomaly cools the atmosphere below 925 hPa, resulting in a peak of heating rate anomaly located at 700–850 hPa. In the eastern Atlantic, dust contributes about 50% of the heating rate anomaly. Westward of 40°W, when the dust content becomes small (AOT < 0.6), the heating rates are more sensitive to the water vapor profile used in the radiative transfer calculation. Retrieving or simulating correct water vapor profiles is essential to the assessment of the SAL heating budgets in regions where the dust content in the SAL is small.

Corresponding author address: Sun Wong, Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77840-3150. Email: swong@neo.tamu.edu

Save
  • Carlson, T. N., and J. M. Prospero, 1972: The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meteor., 11 , 283297.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and S. G. Benjamin, 1980: Radiative heating rates for Saharan dust. J. Atmos. Sci., 37 , 193213.

  • Chou, M-D., and M. J. Suarez, 2002: A solar radiation parameterization for atmospheric studies. Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-1999-104606/VOL15, 38 pp.

    • Search Google Scholar
    • Export Citation
  • Chou, M-D., M. J. Suarez, X-Z. Liang, and M. M-H. Yan, 2003: A thermal infrared radiation parameterization for atmospheric studies. Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-2001-104606/VOL19, 68 pp.

    • Search Google Scholar
    • Export Citation
  • Christopher, S. A., and T. Jones, 2007: Satellite-based assessment of cloud-free net radiative effect of dust aerosols over the Atlantic Ocean. Geophys. Res. Lett., 34 , L02810. doi:10.1029/2006GL027783.

    • Search Google Scholar
    • Export Citation
  • Colarco, P. R., O. B. Toon, O. Torres, and P. J. Rasch, 2002: Determining the UV imaginary index of refraction of Saharan dust particles from Total Ozone Mapping Spectrometer data using a three-dimensional model of dust transport. J. Geophys. Res., 107 , 4289. doi:10.1029/2001JD000903.

    • Search Google Scholar
    • Export Citation
  • Colarco, P. R., O. B. Toon, and B. N. Holben, 2003: Saharan dust transport to the Caribbean during PRIDE: 1. Influence of dust sources and removal mechanisms on the timing and magnitude of downwind aerosol optical depth events from simulations of in situ and remote sensing observations. J. Geophys. Res., 108 , 8589. doi:10.1029/2002JD002658.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Dubovik, O., and Coauthors, 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci., 59 , 19591966.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85 , 353365.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Marron, 2008: A reexamination of the Jordan mean tropical sounding based on awareness of the Saharan air layer: Results from 2002. J. Climate, 21 , 52425253.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., J. Dunion, J. A. Foley, A. K. Heidinger, and C. S. Velden, 2006: New evidence for a relationship between Atlantic tropical cylone activity and African dust outbreaks. Geophys. Res. Lett., 33 , L19813. doi:10.1029/2006GL026408.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., and Coauthors, 2008: Ocean temperature forcing by aerosols across the Atlantic tropical cyclone development region. Geochem. Geophys. Geosyst., 9 , Q05V04. doi:10.1029/2007GC001790.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., and M. J. McPhaden, 2008: Trends in Saharan dust and tropical Atlantic climate during 1980–2006. Geophys. Res. Lett., 35 , L20706. doi:10.1029/2008GL035042.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293 , 474479.

    • Search Google Scholar
    • Export Citation
  • Hand, J., N. Mahowald, Y. Chen, R. Siefert, C. Luo, A. Subramaniam, and I. Fung, 2004: Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications. J. Geophys. Res., 109 , D17205. doi:10.1029/2004JD004574.

    • Search Google Scholar
    • Export Citation
  • Jones, C., N. Mahowald, and C. Luo, 2004: Observational evidence of African desert dust intensification of easterly waves. Geophys. Res. Lett., 31 , L17208. doi:10.1029/2004GL020107.

    • Search Google Scholar
    • Export Citation
  • Kanamitusu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and T. N. Carlson, 1988: Analysis and numerical simulations of the Saharan air layer and its effect on easterly wave disturbances. J. Atmos. Sci., 45 , 31033136.

    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and Coauthors, 1999: Validation of the Saharan dust plume conceptual model using lidar, Meteosat, and ECMWF data. Bull. Amer. Meteor. Soc., 80 , 10451075.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., D. Tanré, L. A. Remer, E. Vermote, A. Chu, and B. N. Holben, 1997: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res., 102 , 1705117067.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., D. Tanré, O. Dubovik, A. Karnieli, and L. A. Remer, 2001: Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing. Geophys. Res. Lett., 28 , 14791482.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., I. Koren, L. A. Remer, D. Tanré, P. Ginoux, and S. Fan, 2005: Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J. Geophys. Res., 110 , D10S12. doi:10.1029/2003JD004436.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41 , 442458.

    • Search Google Scholar
    • Export Citation
  • Léon, J-F., D. Tanré, J. Pelon, Y. J. Kaufman, J. M. Haywood, and B. Chatenet, 2003: Profiling of a Saharan dust outbreak based on a synergy between active and passive remote sensing. J. Geophys. Res., 108 , 8575. doi:10.1029/2002JD002774.

    • Search Google Scholar
    • Export Citation
  • Levy, R. C., and Coauthors, 2003: Evaluation of the Moderate-Resolution Imaging Spectroradiometer (MODIS) retrievals of dust aerosol over the ocean during PRIDE. J. Geophys. Res., 108 , 8594. doi:10.1029/2002JD002460.

    • Search Google Scholar
    • Export Citation
  • Li, F., A. M. Vogelmann, and V. Ramanathan, 2004: Saharan dust aerosol radiative forcing measured from space. J. Climate, 17 , 25582571.

    • Search Google Scholar
    • Export Citation
  • Luo, C., N. Mahowald, and J. del Corral, 2003: Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution. J. Geophys. Res., 108 , 4447. doi:10.1029/2003JD003483.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N., C. S. Zender, C. Luo, D. Savoie, O. Torres, and J. del Corral, 2002: Understanding the 30-year Barbados desert dust record. J. Geophys. Res., 107 , 4561. doi:10.1029/2002JD002097.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N., C. Luo, J. del Corral, and C. S. Zender, 2003: Interannual variability in atmospheric mineral aerosols from a 22-year model simulation and observational data. J. Geophys. Res., 108 , 4352. doi:10.1029/2002JD002821.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N., D. R. Muhs, S. Levis, P. J. Rasch, M. Yoshioka, C. S. Zender, and C. Luo, 2006: Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J. Geophys. Res., 111 , D10202. doi:10.1029/2005JD006653.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., A. Grini, J. M. Haywood, F. Stordal, B. Chatenet, D. Tanré, J. K. Sundet, and I. S. A. Isaksen, 2003: Modelling the radiative impact of mineral dust during the Saharan Dust Experiment (SHADE) campaign. J. Geophys. Res., 108 , 8679. doi:10.1029/2002JD002566.

    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., and Coauthors, 2005: Profile observations of the Saharan air layer during AEROSE 2004. Geophys. Res. Lett., 32 , L05815. doi:10.1029/2004GL022028.

    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., and Coauthors, 2006: Ship-based measurements for infrared sensor validation during Aerosol and Ocean Science Expedition 2004. J. Geophys. Res., 111 , D09S04. doi:10.1029/2005JD006385.

    • Search Google Scholar
    • Export Citation
  • Patterson, E. M., 1981: Optical properties of the crustal aerosol: Relation to chemical and physical characteristics. J. Geophys. Res., 86 , 32363246.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and T. N. Carlson, 1972: Vertical and area distributions of Saharan dust over the western equatorial North Atlantic Ocean. J. Geophys. Res., 77 , 52555265.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., N. M. Mahowald, and B. E. Eaton, 1997: Representations of transport, convection, and hydrologic cycle in chemical transport models: Implications for the modeling short-lived and soluble species. J. Geophys. Res., 102 , 2812728138.

    • Search Google Scholar
    • Export Citation
  • Reid, J. S., and Coauthors, 2003: Comparison of size and morphological measurements of coarse mode dust particles from Africa. J. Geophys. Res., 108 , 8593. doi:10.1029/2002JD002485.

    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2002: Validation of MODIS aerosol retrieval over ocean. Geophys. Res. Lett., 29 , 8008. doi:10.1029/2001GL013204.

    • Search Google Scholar
    • Export Citation
  • Sinyuk, A., O. Torres, and O. Dubovik, 2003: Combined use of satellite and surface observations to infer the imaginary part of refractive index of Saharan dust. Geophys. Res. Lett., 30 , 1081. doi:10.1029/2002GL016189.

    • Search Google Scholar
    • Export Citation
  • Sokolik, I., A. Andronova, and T. C. Johnson, 1993: Complex refractive index of atmospheric dust aerosols. Atmos. Environ., 27A , 24952502.

    • Search Google Scholar
    • Export Citation
  • Szczodrak, M. P., P. J. Minnett, N. R. Nalli, and W. F. Feltz, 2007: Profiling the lower troposphere over the ocean with infrared hyperspectral measurements of the Marine-Atmosphere Emitted Radiance Interferometer. J. Atmos. Oceanic Technol., 24 , 390401.

    • Search Google Scholar
    • Export Citation
  • Volz, F. E., 1973: Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice, and flyash. Appl. Opt., 12 , 564568.

  • Weaver, C. J., P. Ginoux, N. C. Hsu, M-D. Chou, and J. Joiner, 2002: Radiative forcing of Saharan dust: GOCART model simulations compared with ERBE data. J. Atmos. Sci., 59 , 736747.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2003: The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, and Z. Lui, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4893), 4891–4911.

    • Search Google Scholar
    • Export Citation
  • Wong, S., and A. E. Dessler, 2005: Suppression of deep convection over the tropical North Atlantic by the Saharan air layer. Geophys. Res. Lett., 32 , L09808. doi:10.1029/2004GL022295.

    • Search Google Scholar
    • Export Citation
  • Wong, S., P. R. Colarco, and A. E. Dessler, 2006: Principal component analysis of the evolution of the Saharan air layer and dust transport: Comparison between a model simulation and MODIS and AIRS retrievals. J. Geophys. Res., 111 , D20109. doi:10.1029/2006JD007093.

    • Search Google Scholar
    • Export Citation
  • Wong, S., A. E. Dessler, N. M. Mahowald, P. R. Colarco, and A. da Silva, 2008: Long-term variability in Saharan dust transport and its link to North Atlantic sea surface temperature. Geophys. Res. Lett., 35 , L07812. doi:10.1029/2007GL032297.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and Coauthors, 2007: Modeling of the scattering and radiative properties of nonspherical dust-like aerosols. J. Aerosol Sci., 38 , 9951014.

    • Search Google Scholar
    • Export Citation
  • Yoshioka, M., N. M. Mahowald, A. J. Conley, W. D. Collins, D. W. Fillmore, C. S. Zender, and D. B. Coleman, 2007: Impact of desert dust radiative forcing on Sahel precipitation: Relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming. J. Climate, 20 , 14451467.

    • Search Google Scholar
    • Export Citation
  • Yu, H., R. E. Dickinson, M. Chin, Y. J. Kaufman, B. N. Holben, I. V. Geogdzhayev, and M. I. Mishchenko, 2004: Annual cycle of global distributions of aerosol optical depth from integration of MODIS retrievals and GOCART model simulations. J. Geophys. Res., 108 , 4128. doi:10.1029/2002JD002717.

    • Search Google Scholar
    • Export Citation
  • Yu, H., and Coauthors, 2006: Direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations. J. Geophys. Res., 109 , D03206. doi:10.1029/2003JD003914.

    • Search Google Scholar
    • Export Citation
  • Zender, C. S., B. Huisheng, and D. Newman, 2003: Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res., 108 , 4416. doi:10.1029/2002JD002775.

    • Search Google Scholar
    • Export Citation
  • Zhu, A., V. Ramanathan, F. Li, and D. Kim, 2007: Dust plumes over the Pacific, Indian, and Atlantic oceans: Climatology and radiative impact. J. Geophys. Res., 112 , D16208. doi:10.1029/2007JD008427.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 480 230 6
PDF Downloads 245 88 4