Quantifying Carbon Cycle Feedbacks

J. M. Gregory Walker Institute for Climate System Research, University of Reading, Reading, and Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by J. M. Gregory in
Current site
Google Scholar
PubMed
Close
,
C. D. Jones Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by C. D. Jones in
Current site
Google Scholar
PubMed
Close
,
P. Cadule CNRS/IPSL, Paris, and IPSL/LSCE, Gif-sur-Yvette, France

Search for other papers by P. Cadule in
Current site
Google Scholar
PubMed
Close
, and
P. Friedlingstein IPSL/LSCE, Gif-sur-Yvette, France, and QUEST, University of Bristol, Bristol, United Kingdom

Search for other papers by P. Friedlingstein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO2 concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, and thus compares their magnitudes. The carbon cycle gives rise to two climate feedback terms: the concentration–carbon feedback, resulting from the uptake of carbon by land and ocean as a biogeochemical response to the atmospheric CO2 concentration, and the climate–carbon feedback, resulting from the effect of climate change on carbon fluxes. In the earth system models of the Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP), climate–carbon feedback on warming is positive and of a similar size to the cloud feedback. The concentration–carbon feedback is negative; it has generally received less attention in the literature, but in magnitude it is 4 times larger than the climate–carbon feedback and more uncertain. The concentration–carbon feedback is the dominant uncertainty in the allowable CO2 emissions that are consistent with a given CO2 concentration scenario. In modeling the climate response to a scenario of CO2 emissions, the net carbon cycle feedback is of comparable size and uncertainty to the noncarbon–climate response. To quantify simulated carbon cycle feedbacks satisfactorily, a radiatively coupled experiment is needed, in addition to the fully coupled and biogeochemically coupled experiments, which are referred to as coupled and uncoupled in C4MIP. The concentration–carbon and climate–carbon feedbacks do not combine linearly, and the concentration–carbon feedback is dependent on scenario and time.

Corresponding author address: Jonathan Gregory, P.O. Box 243, Meteorology Building, University of Reading, Reading, RG6 6BB, United Kingdom. Email: j.m.gregory@reading.ac.uk

Abstract

Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO2 concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, and thus compares their magnitudes. The carbon cycle gives rise to two climate feedback terms: the concentration–carbon feedback, resulting from the uptake of carbon by land and ocean as a biogeochemical response to the atmospheric CO2 concentration, and the climate–carbon feedback, resulting from the effect of climate change on carbon fluxes. In the earth system models of the Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP), climate–carbon feedback on warming is positive and of a similar size to the cloud feedback. The concentration–carbon feedback is negative; it has generally received less attention in the literature, but in magnitude it is 4 times larger than the climate–carbon feedback and more uncertain. The concentration–carbon feedback is the dominant uncertainty in the allowable CO2 emissions that are consistent with a given CO2 concentration scenario. In modeling the climate response to a scenario of CO2 emissions, the net carbon cycle feedback is of comparable size and uncertainty to the noncarbon–climate response. To quantify simulated carbon cycle feedbacks satisfactorily, a radiatively coupled experiment is needed, in addition to the fully coupled and biogeochemically coupled experiments, which are referred to as coupled and uncoupled in C4MIP. The concentration–carbon and climate–carbon feedbacks do not combine linearly, and the concentration–carbon feedback is dependent on scenario and time.

Corresponding author address: Jonathan Gregory, P.O. Box 243, Meteorology Building, University of Reading, Reading, RG6 6BB, United Kingdom. Email: j.m.gregory@reading.ac.uk

Save
  • Boer, G. J., and V. Arora, 2009: Temperature and concentration feedbacks in the carbon cycle. Geophys. Res. Lett., 36 , L02704. doi:10.1029/2008GL036220.

    • Search Google Scholar
    • Export Citation
  • Colman, R., 2003: A comparison of climate feedbacks in general circulation models. Climate Dyn., 20 , 865873.

  • Cox, P. M., and C. D. Jones, 2008: Illuminating the modern dance of climate and CO2. Science, 321 , 16421644. doi:10.1126/science.1158907.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408 , 184187.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2001: Modelling vegetation and the carbon cycle as interactive elements of the climate system. Meteorology at the Millennium, R. Pearce, Ed., Academic Press, 259–279.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., C. Huntingford, and C. D. Jones, 2006: Conditions for sink-to-source transitions and runwaway feedbacks from the land carbon-cycle. Avoiding Dangerous Climate Change, H. J. Schellnhuber et al., Eds., Cambridge University Press, 155–161.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • Denman, K. L., and Coauthors, 2007: Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 499–507.

    • Search Google Scholar
    • Export Citation
  • Dong, B., J. M. Gregory, and R. Sutton, 2009: Understanding land-sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22 , 30793097.

    • Search Google Scholar
    • Export Citation
  • Doutriaux-Boucher, M., M. J. Webb, J. M. Gregory, and O. Boucher, 2009: Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophys. Res. Lett., 36 , L02703. doi:10.1029/2008GL036273.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J-L., and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Climate, 21 , 51355144.

    • Search Google Scholar
    • Export Citation
  • Forster, P. Mde F., and K. E. Taylor, 2006: Climate forcings and climate sensitivities diagnosed from coupled climate model integrations. J. Climate, 19 , 61816194.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., J. L. Dufresne, P. M. Cox, and P. Rayner, 2003: How positive is the feedback between climate change and the carbon cycle? Tellus, 55B , 692700.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19 , 33373353.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16 , 501515.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and J. F. B. Mitchell, 1997: The climate response to CO2 of the Hadley Centre coupled AOGCM with and without flux adjustment. Geophys. Res. Lett., 24 , 19431946.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and P. M. Forster, 2008: Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res., 113 , D23105. doi:10.1029/2008JD010405.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and M. J. Webb, 2008: Tropospheric adjustment induces a cloud component in CO2 forcing. J. Climate, 21 , 5871.

  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31 , L03205. doi:10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, M. Ruedy, and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, J. E. Hansen and T. Takahashi, Eds., Amer. Geophys. Union, 130–163.

    • Search Google Scholar
    • Export Citation
  • Hibbard, K. A., G. A. Meehl, P. M. Cox, and P. Friedlingstein, 2007: A strategy for climate change stabilization experiments. Eos, Trans. Amer. Geophys. Union, 88 .doi:10.1029/2007EO200002.

    • Search Google Scholar
    • Export Citation
  • Huntingford, C., J. A. Lowe, B. B. B. Booth, C. D. Jones, G. R. Harris, L. K. Gohar, and P. Meir, 2009: Contributions of carbon cycle uncertainty to future climate projection spread. Tellus, 61B , 355360. doi:10.1111/j.1600-0889.2009.00414.x.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., 2007: Implications of CO2 fertilization for future climate change in a coupled climate-carbon model. Global Change Biol., 13 , 10681078. doi:10.1111/j.1365-2486.2007.01343.x.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., N. Gillett, P. A. Stott, and K. Zickfeld, 2009: The proportionality of global warming to cumulative carbon emissions. Nature, 459 , 829832.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., E. J. Highwood, K. P. Shine, and F. Stordal, 1998: New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett., 25 , 27152718.

    • Search Google Scholar
    • Export Citation
  • Nakićenović, N., and Coauthors, 2000: Emissions Scenarios. Cambridge University Press, 599 pp.

  • Plattner, G-K., and Coauthors, 2008: Long-term climate commitments projected with climate–carbon cycle models. J. Climate, 21 , 27212751.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, J. T. Houghton et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Roe, G., 2009: Feedbacks, timescales, and seeing red. Annu. Rev. Earth Planet. Sci., 37 , 93115. doi:10.1146/annurev.earth.061008.134734.

    • Search Google Scholar
    • Export Citation
  • Roe, G., and M. B. Baker, 2007: Why is climate sensitivity so unpredictable? Science, 318 , 629632. doi:10.1126/science.1144735.

  • Scheffer, M., V. Brovkin, and P. M. Cox, 2006: Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change. Geophys. Res. Lett., 33 , L10702. doi:10.1029/2005GL025044.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996: Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science, 271 , 14021406.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., R. G. Derwent, D. J. Wuebbles, and J-J. Morcrette, 1990: Radiative forcing of climate. Climate Change: The IPCC Scientific Assessment, J. T. Houghton, G. J. Jenkins, and J. J. Ephraums, Eds., Cambridge University Press, 45–68.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19 , 33543360.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21 , 35043520.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., G-K. Plattner, R. Knutti, and P. Friedlingstein, 2009: Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA, 106 , 17041709. doi:10.1073/pnas.0812721106.

    • Search Google Scholar
    • Export Citation
  • Van Vuuren, D. P., and Coauthors, 2008: Temperature increase of 21st century mitigation scenarios. Proc. Natl. Acad. Sci. USA, 105 , 1525815262. doi:10.1073/pnas.0711129105.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1834 632 57
PDF Downloads 1303 384 34