• Akiyoshi, H., , T. Sugita, , H. Kanzawa, , and N. Kawamoto, 2004: Ozone perturbations in the Arctic summer lower stratosphere as a reflection of NOx chemistry and planetary scale wave activity. J. Geophys. Res., 109 , D03304. doi:10.1029/2003JD003632.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Austin, J., , and F. Li, 2006: On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air. Geophys. Res. Lett., 33 , L17807. doi:10.1029/2006GL026867.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and Coauthors, 2003: Uncertainties and assessments of chemistry-climate models of the stratosphere. Atmos. Chem. Phys., 3 , 127.

    • Search Google Scholar
    • Export Citation
  • Austin, J., , R. J. Wilson, , F. Li, , and H. Vomel, 2006: Evolution of water vapor concentrations and stratospheric age of air in coupled chemistry–climate model simulations. J. Atmos. Sci., 64 , 905921.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., , M. Dameris, , and T. G. Shepherd, 2007: How will the stratosphere affect climate change? Science, 316 , 15761577.

  • Beagley, S. R., , J. de Grandpre, , J. N. Koshyk, , N. A. McFarlane, , and T. G. Shepherd, 1997: Radiative-dynamical climatology of the first generation Canadian Middle Atmosphere Model. Atmos.–Ocean, 35 , 293331.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , and R. L. Fogt, 2004: Strong trends in the skill of the ERA-40 and NCEP–NCAR reanalysis in the high and midlatitudes of the Southern Hemisphere, 1958–2001. J. Climate, 17 , 46034619.

    • Search Google Scholar
    • Export Citation
  • Cordero, E. C., , and P. Mde F. Forster, 2006: Stratospheric variability and trends in models used for the IPCC AR4. Atmos. Chem. Phys., 6 , 53695380.

    • Search Google Scholar
    • Export Citation
  • de Grandpré, J., , S. R. Beagley, , V. I. Fomichev, , E. Griffioen, , J. C. McConnell, , A. S. Medvedev, , and T. G. Shepherd, 2000: Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model. J. Geophys. Res., 105 , 26 47526 492.

    • Search Google Scholar
    • Export Citation
  • Egorova, T., , E. Rozanov, , V. Zubov, , E. Manzini, , W. Schmutz, , and T. Peter, 2005: Chemistry-climate model SOCOL: A validation of the present-day climatology. Atmos. Chem. Phys., 5 , 15571576.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2006: Assessment of temperatures, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111 , D22308. doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2007: Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res., 112 , D16303. doi:10.1029/2006JD008332.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , D. R. Marsh, , D. E. Kinnison, , B. A. Boville, , and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112 , D09301. doi:10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2008: The tropical tropopause layer 1960–2100. Atmos. Chem. Phys. Discuss., 8 , 13671413.

  • Haigh, J. D., , M. Blackburn, , and R. Day, 2005: The response of tropospheric circulation to perturbations in lower-stratospheric temperature. J. Climate, 18 , 36723685.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., , J. Scinocca, , and M. Greenslade, 2001: Formation and maintenance of the extratropical tropopause by baroclinic eddies. Geophys. Res. Lett., 28 , 41794182.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1982: On the height of the tropopause and the static stability of the tropopause. J. Atmos. Sci., 39 , 412417.

  • Highwood, E. J., , and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124 , 15791604.

  • Highwood, E. J., , B. J. Hoskins, , and P. Berrisford, 2000: Properties of the Arctic tropopause. Quart. J. Roy. Meteor. Soc., 126 , 15151532.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., , T. D. Schaack, , and A. J. Lenzen, 1991: Global objective tropopause analysis. Mon. Wea. Rev., 119 , 18161831.

  • Hoinka, K. P., 1998: Statistics of the global tropopause pressure. Mon. Wea. Rev., 126 , 22482265.

  • Holton, J. R., , P. H. Haynes, , M. E. McIntyre, , A. R. Douglass, , R. B. Rood, , and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33 , 403439.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., , Y. Ding, , D. J. Griggs, , M. Noguer, , P. J. van der Linden, , and D. Xiaosu, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 944 pp.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., , S. J. Eichelberger, , D. L. Hartmann, , R. Shia, , and Y. L. Yung, 2007: Influence of doubled CO2 on ozone via changes in the Brewer-Dobson circulation. J. Atmos. Sci., 64 , 27512755.

    • Search Google Scholar
    • Export Citation
  • Johns, T. C., and Coauthors, 2006: The new Hadley Centre climate model HadGEM1: Evaluation of coupled simulations. J. Climate, 19 , 13271353.

    • Search Google Scholar
    • Export Citation
  • Ko, M. K. W., , N. Sze, , and D. K. Weisenstein, 1989: The roles of dynamical and chemical processes in determining the stratospheric concentration of ozone in one-dimensional and two-dimensional models. J. Geophys. Res., 94 , 98899896.

    • Search Google Scholar
    • Export Citation
  • Kurokawa, J., , H. Akiyoshi, , T. Nagashima, , H. Masunaga, , T. Nakajima, , M. Takahashi, , and H. Nakane, 2005: Effects of atmospheric sphericity on stratospheric chemistry and dynamics over Antarctica. J. Geophys. Res., 110 , D21305. doi:10.1029/2005JD005798.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., , I. M. Held, , and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14 , 22382249.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112 , D10119. doi:10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21 , 361385.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Sciences Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., , G. A. Schmidt, , and D. T. Shindell, 2006: Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res., 111 , D18101. doi:10.1029/2005JD006323.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., , and R. Swart, 2000: Emissions Scenarios. Cambridge University Press, 599 pp.

  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , F. Wu, , and D. Gaffen, 2000: Interannual variability of the tropical tropopause derived from radiosonde and NCEP reanalysis. J. Geophys. Res., 105 , 15 50915 523.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., , M. Dameris, , and R. Sausen, 2003: Determining the tropopause height from gridded data. Geophys. Res. Lett., 30 , 2042. doi:10.1029/2003GL018240.

    • Search Google Scholar
    • Export Citation
  • Rozanov, E., and Coauthors, 2005: Assessment of the ozone and temperature variability during 1979–1993 with the chemistry-climate model SOCOL. Adv. Space Res., 35 , 13751384.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105 , 73377356.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2003a: Contribution of anthropogenic and natural forcing to recent tropopause height changes. Science, 301 , 479483.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2003b: Behavior of tropopause height and atmospheric temperature in models, reanalysis, and observations: Decadal changes. J. Geophys. Res., 108 , 4002. doi:10.1029/2002JD002258.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2004: Identification of anthropogenic climate change using a second-generation reanalysis. J. Geophys. Res., 109 , D21104. doi:10.1029/2004JD005075.

    • Search Google Scholar
    • Export Citation
  • Sausen, R., , and B. D. Santer, 2003: Use of changes in tropopause height to detect human influences on climate. Meteor. Z., 12 , 131136.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61 , 13171340.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , and W. J. Randel, 2006: Variability and trends in the global tropopause estimated from radiosonde data. J. Geophys. Res., 111 , D21101. doi:10.1029/2006JD007363.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , R. J. Ross, , J. K. Angell, , and G. C. Reid, 2001: Climatological characteristics of the tropical tropopause as revealed by radiosondes. J. Geophys. Res., 106 , 78577878.

    • Search Google Scholar
    • Export Citation
  • Son, S-W., , and S. Lee, 2006: Preferred modes of variability and their relationship with climate change. J. Climate, 19 , 20632075.

  • Son, S-W., , S. Lee, , and S. B. Feldstein, 2007: Intraseasonal variability of the zonal-mean extratropical tropopause height. J. Atmos. Sci., 64 , 608620.

    • Search Google Scholar
    • Export Citation
  • Son, S-W., and Coauthors, 2008: Impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320 , 14861489.

    • Search Google Scholar
    • Export Citation
  • Steinbrecht, W., , H. Claude, , V. Koehler, , and K. Hoinka, 1998: Correlation between tropopause height and total ozone: Implication for long-term changes. J. Geophys. Res., 103 , 19 18319 192.

    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., , A. R. Douglass, , S. Steenrod, , and S. Pawson, 2006: Trends in stratospheric ozone: Lessons learned from a 3D chemical transport model. J. Atmos. Sci., 63 , 10281041.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., , and G. C. Craig, 2000: Stratospheric influence on tropopause height: The radiative constraint. J. Atmos. Sci., 57 , 1728.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 2006: Circulation sensitivity to tropopause height. J. Atmos. Sci., 63 , 19541961.

  • WMO, 1957: Definition of the tropopause. WMO Bull., 6 , 136.

  • WMO, 1986: Atmospheric ozone 1985: Global ozone research and monitoring report. WMO Rep. 16, 392 pp.

  • WMO/UNEP, 2003: Scientific Assessment of Ozone Depletion: 2002. WMO Global Ozone Research and Monitoring Project Rep. 47.

  • Wong, S., , and W-C. Wang, 2003: Tropical–extratropical connection in interannual variation of the tropopause: Comparison between NCEP/NCAR reanalysis and an atmospheric general circulation model simulation. J. Geophys. Res., 108 , 4043. doi:10.1029/2001JD002016.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32 , L18701. doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., , J. R. Holton, , and J. M. Wallace, 1994: On the cause of the annual cycle in tropical lower stratospheric temperature. J. Atmos. Sci., 51 , 169174.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 69 69 10
PDF Downloads 46 46 5

The Impact of Stratospheric Ozone Recovery on Tropopause Height Trends

View More View Less
  • a *Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York
  • | + Department of Applied Physics and Applied Mathematics, and Department of Earth and Environmental Sciences, Columbia University, New York, New York
  • | # Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland
  • | @ Department of Physics, University of Toronto, Toronto, Ontario, Canada
  • | & National Institute for Environmental Studies, Tsukuba, Japan
  • | f **National Center for Atmospheric Research, Boulder, Colorado
  • | ++ Environment Canada, Toronto, Ontario, Canada
  • | ## Institute for Atmospheric and Climate Sciences/ETH, Zurich, and Physical Meteorological Observatory, World Radiation Center, Davos, Switzerland
© Get Permissions
Restricted access

Abstract

The evolution of the tropopause in the past, present, and future climate is examined by analyzing a set of long-term integrations with stratosphere-resolving chemistry climate models (CCMs). These CCMs have high vertical resolution near the tropopause, a model top located in the mesosphere or above, and, most important, fully interactive stratospheric chemistry. Using such CCM integrations, it is found that the tropopause pressure (height) will continue to decrease (increase) in the future, but with a trend weaker than that in the recent past. The reduction in the future tropopause trend is shown to be directly associated with stratospheric ozone recovery. A significant ozone recovery occurs in the Southern Hemisphere lower stratosphere of the CCMs, and this leads to a relative warming there that reduces the tropopause trend in the twenty-first century.

The future tropopause trends predicted by the CCMs are considerably smaller than those predicted by the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) models, especially in the southern high latitudes. This difference persists even when the CCMs are compared with the subset of the AR4 model integrations for which stratospheric ozone recovery was prescribed. These results suggest that a realistic representation of the stratospheric processes might be important for a reliable estimate of tropopause trends. The implications of these finding for the Southern Hemisphere climate change are also discussed.

Corresponding author address: Seok-Woo Son, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada. Email: seok-woo.son@mcgill.ca

Abstract

The evolution of the tropopause in the past, present, and future climate is examined by analyzing a set of long-term integrations with stratosphere-resolving chemistry climate models (CCMs). These CCMs have high vertical resolution near the tropopause, a model top located in the mesosphere or above, and, most important, fully interactive stratospheric chemistry. Using such CCM integrations, it is found that the tropopause pressure (height) will continue to decrease (increase) in the future, but with a trend weaker than that in the recent past. The reduction in the future tropopause trend is shown to be directly associated with stratospheric ozone recovery. A significant ozone recovery occurs in the Southern Hemisphere lower stratosphere of the CCMs, and this leads to a relative warming there that reduces the tropopause trend in the twenty-first century.

The future tropopause trends predicted by the CCMs are considerably smaller than those predicted by the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) models, especially in the southern high latitudes. This difference persists even when the CCMs are compared with the subset of the AR4 model integrations for which stratospheric ozone recovery was prescribed. These results suggest that a realistic representation of the stratospheric processes might be important for a reliable estimate of tropopause trends. The implications of these finding for the Southern Hemisphere climate change are also discussed.

Corresponding author address: Seok-Woo Son, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada. Email: seok-woo.son@mcgill.ca

Save