• Battisti, D. S., 1988: The dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45 , 28892919.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., , H. H. Hendon, , and K. M. Weickman, 2001: Intraseasonal air–sea interactions at the onset of El Niño. J. Climate, 14 , 17021718.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Dunkerton, T. J., , and F. X. Crum, 1995: Eastward propagating ∼2 to 15-day equatorial convection and its relation to the tropical intraseasonal oscillation. J. Geophys. Res., 100 , 25 78125 790.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., , L. Yu, , and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18 , 52245238.

  • Enfield, D. B., 1987: The intraseasonal oscillation in eastern Pacific sea levels: How is it forced? J. Phys. Oceanogr., 17 , 18601876.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., , and W. K. Melville, 2000: Kelvin fronts on the equatorial thermocline. J. Phys. Oceanogr., 30 , 16921705.

  • Frank, W. M., , and P. E. Roundy, 2006: The relationship between tropical waves and tropical cyclogenesis. Mon. Wea. Rev., 134 , 23972417.

    • Search Google Scholar
    • Export Citation
  • Gebbie, G., , I. Eisenman, , A. Wittenberg, , and E. Tziperman, 2007: Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci., 64 , 32813295.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., , and P. S. Schopf, 1984: Kelvin-wave-induced anomalous advection and the onset of surface warming in El Niño events. Mon. Wea. Rev., 112 , 923933.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., , and B. S. Giese, 1991: Episodes of surface westerly winds as observed from islands in the western tropical Pacific. J. Geophys. Res., 96 , 32213227.

    • Search Google Scholar
    • Export Citation
  • Hartten, L. M., 1996: Synoptic settings of westerly wind bursts. J. Geophys. Res., 101 , 16 99717 019.

  • Hendon, H. H., , and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51 , 22252237.

  • Hendon, H. H., , B. Liebmann, , and J. D. Glick, 1998: Oceanic Kelvin waves and the Madden–Julian oscillation. J. Atmos. Sci., 55 , 88101.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , C. Zhang, , and J. D. Glick, 1999: Interannual variation of the Madden–Julian oscillation during austral summer. J. Climate, 12 , 25382550.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , M. C. Wheeler, , and C. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20 , 531543.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kessler, W. S., 2001: EOF representations of the Madden–Julian oscillation and its connection with ENSO. J. Climate, 14 , 30553061.

  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29 , 2125. doi:10.1029/2002GL015924.

  • Kessler, W. S., , and R. Kleeman, 2000: Rectification of the Madden–Julian oscillation into the ENSO cycle. J. Climate, 13 , 35603575.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , K. H. Straub, , and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62 , 27902809.

    • Search Google Scholar
    • Export Citation
  • Kutsuwada, K., , and M. McPhaden, 2002: Intraseasonal variations in the upper equatorial Pacific Ocean prior to and during the 1997–1998 El Niño. J. Phys. Oceanorgr., 32 , 11331149.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., , and S. Shen, 1988: On the dynamics of intraseasonal oscillations and ENSO. J. Atmos. Sci., 45 , 17811797.

  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1994: Observations of the 40–50 day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Majda, A. J., , B. Khouider, , G. N. Kiladis, , K. H. Straub, , and M. G. Shefter, 2004: A model for convectively coupled tropical waves: Nonlinearity, rotation, and comparison with observations. J. Atmos. Sci., 61 , 21882205.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1995: The TAO array is completed. Bull. Amer. Meteor. Soc., 76 , 739741.

  • Moore, A. M., , and R. Kleeman, 1999: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12 , 11991220.

  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66 , 823839.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , D. S. Battisti, , A. C. Hirst, , F-F. Jin, , Y. Wakata, , T. Yamagata, , and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , 14 26114 290.

    • Search Google Scholar
    • Export Citation
  • Penland, C., , and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8 , 19992024.

  • Reynolds, R. W., , N. A. Rayner, , T. M. Smith, , D. C. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65 , 13421359.

  • Roundy, P. E., , and W. M. Frank, 2004a: A climatology of waves in the equatorial region. J. Atmos. Sci., 61 , 21052132.

  • Roundy, P. E., , and W. M. Frank, 2004b: Effects of low-frequency wave interactions on intraseasonal oscillations. J. Atmos. Sci., 61 , 30253040.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., , and W. M. Frank, 2004c: Applications of a multiple linear regression model to the analysis of relationships between eastward- and westward-moving intraseasonal modes. J. Atmos. Sci., 61 , 30413048.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., , and G. N. Kiladis, 2006: Observed relationships between intraseasonal oceanic Kelvin waves and atmospheric forcing. J. Climate, 19 , 52535272.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., , and G. N. Kiladis, 2007: Analysis of a reconstructed oceanic Kelvin wave dynamic height dataset for the period 1974–2006. J. Climate, 20 , 43414355.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., , and M. J. Suarez, 1988: Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci., 45 , 549566.

  • Seiki, A., , and Y. N. Takayabu, 2007a: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: Statistics. Mon. Wea. Rev., 135 , 33243345.

    • Search Google Scholar
    • Export Citation
  • Seiki, A., , and Y. N. Takayabu, 2007b: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part II: Energetics over the western and central Pacific. Mon. Wea. Rev., 135 , 33463361.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., , and H. H. Hendon, 2002: Rectified wind forcing and latent heat flux produced by the Madden–Julian oscillation. J. Climate, 15 , 35003507.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., , P. E. Roundy, , and G. N. Kiladis, 2008: Variability of intraseasonal Kelvin waves in the equatorial Pacific Ocean. J. Phys. Oceanogr., 38 , 921944.

    • Search Google Scholar
    • Export Citation
  • Slingo, J., , D. F. Rowell, , K. R. Sperber, , and F. Nortley, 1999: On the predictability of interannual behavior of the Madden-Julian Oscillation and its relationship to El Niño. Quart. J. Roy. Meteor. Soc., 125 , 583609.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., , and G. N. Kiladis, 2003: The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60 , 16551668.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and D. E. Harrison, 2000: Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J. Climate, 13 , 18141830.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in Atmospheric Sciences. Academic Press, 627 pp.

  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific to atmospheric forcing. J. Phys. Oceanogr., 5 , 572584.

  • Yu, L., , R. A. Weller, , and W. T. Liu, 2003: Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the western equatorial Pacific. J. Geophys. Res., 108 , 3128. doi:10.1029/2002JC001498.

    • Search Google Scholar
    • Export Citation
  • Zhang, C. D., 2001: Intraseasonal perturbations in sea surface temperatures of the equatorial eastern Pacific and their association with the Madden–Julian oscillation. J. Climate, 14 , 13091322.

    • Search Google Scholar
    • Export Citation
  • Zhang, C. D., 2005: Madden Julian Oscillation. Rev. Geophys., 43 , RG2003. doi:10.1029/2004RG000158.

  • Zhang, C. D., , and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial Pacific. J. Climate, 15 , 24292445.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 58 58 5
PDF Downloads 23 23 2

The Association of the Evolution of Intraseasonal Oscillations to ENSO Phase

View More View Less
  • 1 University at Albany, State University of New York, Albany, New York
© Get Permissions
Restricted access

Abstract

The Pacific Ocean intraseasonal Kelvin wave is a leading oceanic mode that links intraseasonal tropical atmospheric variations with interannual variations in the coupled ocean–atmosphere system. This study considers the premise that these waves may evolve differently with their associated weather patterns during different phases of El Niño–Southern Oscillation (ENSO). If atmospheric and oceanic intraseasonal modes interact and evolve differently during various stages of ENSO, this result may provide useful information with regard to the role of these intraseasonal processes in ENSO evolution. This work utilizes signals of the oceanic Kelvin wave as a statistical basis for a simple composite averaging technique that is applied during different phases of ENSO to objectively analyze the evolution of oceanic and the associated portions of atmospheric intraseasonal oscillations. Results confirm the above premise and suggest that coupling between Kelvin waves and atmospheric convection evolves differently during different stages of ENSO. Further, intraseasonal zonal wind anomalies across the east Pacific timed with oceanic Kelvin waves are stronger during adjustment toward El Niño than during adjustment away from El Niño. These and other patterns in the composites suggest the possibility that systematic changes in the evolution of intraseasonal variations over the course of ENSO might feed back upon this interannual mode to influence the evolution of ENSO itself.

Corresponding author address: Paul E. Roundy, Department of Earth and Atmospheric Sciences, DEAS-ES351, Albany, NY 12222. Email: roundy@atmos.albany.edu

Abstract

The Pacific Ocean intraseasonal Kelvin wave is a leading oceanic mode that links intraseasonal tropical atmospheric variations with interannual variations in the coupled ocean–atmosphere system. This study considers the premise that these waves may evolve differently with their associated weather patterns during different phases of El Niño–Southern Oscillation (ENSO). If atmospheric and oceanic intraseasonal modes interact and evolve differently during various stages of ENSO, this result may provide useful information with regard to the role of these intraseasonal processes in ENSO evolution. This work utilizes signals of the oceanic Kelvin wave as a statistical basis for a simple composite averaging technique that is applied during different phases of ENSO to objectively analyze the evolution of oceanic and the associated portions of atmospheric intraseasonal oscillations. Results confirm the above premise and suggest that coupling between Kelvin waves and atmospheric convection evolves differently during different stages of ENSO. Further, intraseasonal zonal wind anomalies across the east Pacific timed with oceanic Kelvin waves are stronger during adjustment toward El Niño than during adjustment away from El Niño. These and other patterns in the composites suggest the possibility that systematic changes in the evolution of intraseasonal variations over the course of ENSO might feed back upon this interannual mode to influence the evolution of ENSO itself.

Corresponding author address: Paul E. Roundy, Department of Earth and Atmospheric Sciences, DEAS-ES351, Albany, NY 12222. Email: roundy@atmos.albany.edu

Save