Cross-Frequency Coupling, Skewness, and Blocking in the Northern Hemisphere Winter Circulation

Kevin J. Rennert Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Kevin J. Rennert in
Current site
Google Scholar
PubMed
Close
and
John M. Wallace Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by John M. Wallace in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Variability in daily wintertime [December–February (DJF)] 500-hPa heights on low [L: <(30 day)−1], intermediate [M: (6–30 day)−1], and high [H: >(6 day)−1] frequencies is examined using 40-yr ECMWF Re-Analysis (ERA-40) data. Leading EOFs of L correspond to planetary-scale teleconnection patterns; those of M to retrograding, eastward-dispersing long waves oriented along great circle routes; and those of H to baroclinic waves in the climatological-mean storm tracks. In the Atlantic sector, EOF 1 of M appears to be embedded in EOF 1 of L.

Cross-frequency coupling between L and M exhibits distinctive patterns. In the Atlantic sector the negative polarity of the North Atlantic Oscillation (NAO) with above-normal heights over Greenland is associated with enhanced M variability over Greenland. An analogous relationship is observed in the Pacific sector between an NAO-like pattern and the variance of M over Alaska. Cross-frequency coupling between L and H in both sectors is indicative of a reinforcement of the background flow by the baroclinic waves. Cross-frequency coupling between L and M is responsible for most of the skewness of the anomalies in the 500-hPa height field.

Linear wave dynamics evidently play an important role in M. Composites of high amplitude anomalies of contrasting signs over Baffin Bay exhibit similar spatial structures (apart from the sign reversal) and they exhibit a similar evolution, with westward phase propagation and downstream development characteristic of the behavior of Rossby waves. It is argued that teleconnection patterns exhibit memories much longer than the 7–10-day decorrelation time of daily indices formed by projecting unfiltered daily fields onto their spatial patterns.

Corresponding author address: Kevin J. Rennert, Dept. of Atmospheric Science, University of Washington, Box 351640, Seattle, WA, 98195-1640. Email: rennert@atmos.washington.edu

Abstract

Variability in daily wintertime [December–February (DJF)] 500-hPa heights on low [L: <(30 day)−1], intermediate [M: (6–30 day)−1], and high [H: >(6 day)−1] frequencies is examined using 40-yr ECMWF Re-Analysis (ERA-40) data. Leading EOFs of L correspond to planetary-scale teleconnection patterns; those of M to retrograding, eastward-dispersing long waves oriented along great circle routes; and those of H to baroclinic waves in the climatological-mean storm tracks. In the Atlantic sector, EOF 1 of M appears to be embedded in EOF 1 of L.

Cross-frequency coupling between L and M exhibits distinctive patterns. In the Atlantic sector the negative polarity of the North Atlantic Oscillation (NAO) with above-normal heights over Greenland is associated with enhanced M variability over Greenland. An analogous relationship is observed in the Pacific sector between an NAO-like pattern and the variance of M over Alaska. Cross-frequency coupling between L and H in both sectors is indicative of a reinforcement of the background flow by the baroclinic waves. Cross-frequency coupling between L and M is responsible for most of the skewness of the anomalies in the 500-hPa height field.

Linear wave dynamics evidently play an important role in M. Composites of high amplitude anomalies of contrasting signs over Baffin Bay exhibit similar spatial structures (apart from the sign reversal) and they exhibit a similar evolution, with westward phase propagation and downstream development characteristic of the behavior of Rossby waves. It is argued that teleconnection patterns exhibit memories much longer than the 7–10-day decorrelation time of daily indices formed by projecting unfiltered daily fields onto their spatial patterns.

Corresponding author address: Kevin J. Rennert, Dept. of Atmospheric Science, University of Washington, Box 351640, Seattle, WA, 98195-1640. Email: rennert@atmos.washington.edu

Save
  • Benedict, J. J., S. Lee, and S. B. Feldstein, 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61 , 121144.

  • Blackmon, M. L., Y-H. Lee, and J. Wallace, 1984a: Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales. J. Atmos. Sci., 41 , 961979.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., Y-H. Lee, J. M. Wallace, and H-H. Hsu, 1984b: Time variation of 500 mb height fluctuations with long, intermediate and short time scales as deduced from lag-correlation statistics. J. Atmos. Sci., 41 , 981991.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1987: A striking example of the atmosphere’s leading traveling pattern. J. Atmos. Sci., 44 , 23102323.

  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5 , 541560.

    • Search Google Scholar
    • Export Citation
  • Cheng, X., and J. M. Wallace, 1993: Cluster analysis of the Northern Hemisphere wintertime 500-hPa height field. J. Atmos. Sci., 50 , 26742696.

    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and N. Gordon, 1983: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics. Mon. Wea. Rev., 111 , 15671586.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2000: The timescale, power spectra, and climate noise properties of teleconnection patterns. J. Climate, 13 , 44304440.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129 , 901924.

  • Hartmann, D. L., and S. J. Ghan, 1980: A statistical study of the dynamics of blocking. Mon. Wea. Rev., 108 , 11441159.

  • Jin, F. F., L. L. Pan, and M. Watanabe, 2006a: Dynamics of synoptic eddy and low-frequency flow interaction. Part I: A linear closure. J. Atmos. Sci., 63 , 16771694.

    • Search Google Scholar
    • Export Citation
  • Jin, F. F., L. L. Pan, and M. Watanabe, 2006b: Dynamics of synoptic eddy and low-frequency flow interaction. Part II: A theory for low-frequency modes. J. Atmos. Sci., 63 , 16951708.

    • Search Google Scholar
    • Export Citation
  • Kimoto, M., and M. Ghil, 1993: Multiple flow regimes in the Northern Hemisphere winter. Part I: Methodology and hemispheric regimes. J. Atmos. Sci., 50 , 26252643.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1987: Retrograding wintertime low-frequency disturbances over the North Pacific Ocean. J. Atmos. Sci., 44 , 27272742.

  • Kushnir, Y., and J. M. Wallace, 1989: Low-frequency variability in the Northern Hemisphere winter: Geographical distribution, structure, and time-scale dependence. J. Atmos. Sci., 46 , 31223142.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45 , 27182743.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 1999: Observed and GCM-simulated westward-propagating, planetary-scale fluctuations with approximately three-week periods. Mon. Wea. Rev., 127 , 23242345.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58 , 33123327.

  • Lorenz, D. J., and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16 , 12121227.

  • Martius, O., C. Schwierz, and H. C. Davies, 2007: Breaking waves at the tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and theoretical LC1/2 classification. J. Atmos. Sci., 64 , 25762592.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and J. M. Wallace, 1991: Skewness of low-frequency fluctuations in the tropospheric circulation during the Northern Hemisphere winter. J. Atmos. Sci., 48 , 14411448.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1988: Medium and extended range predictability and stability of the Pacific/North American mode. Quart. J. Roy. Meteor. Soc., 114 , 697713.

    • Search Google Scholar
    • Export Citation
  • Quadrelli, R., and J. M. Wallace, 2004: Varied expressions of the hemispheric circulation observed in association with contrasting polarities of prescribed patterns of variability. J. Climate, 17 , 42454253.

    • Search Google Scholar
    • Export Citation
  • Rennert, K. J., 2007: Relationships between wintertime modes of atmospheric variability on intermediate and long timescales. Ph.D. thesis, University of Washington, 87 pp.

  • Renwick, J. A., and J. M. Wallace, 1996: Relationships between North Pacific wintertime blocking, El Niño, and the PNA pattern. Mon. Wea. Rev., 124 , 20712076.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64 , 241266.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., 1986: The structure, energetics, and evolution of the dominant frequency-dependent three-dimensional atmospheric modes. J. Atmos. Sci., 43 , 12101237.

    • Search Google Scholar
    • Export Citation
  • Shabbar, A., J. Huang, and K. Higuchi, 2001: The relationship between the wintertime North Atlantic Oscillation and blocking episodes in the North Atlantic. Int. J. Climatol., 21 , 355369.

    • Search Google Scholar
    • Export Citation
  • Strong, C., and G. Magnusdottir, 2008: Tropospheric Rossby wave breaking and the NAO/NAM. J. Atmos. Sci., 65 , 28612876.

  • Uppala, S., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Wallace, J. M., and D. Gutzler, 1981: Teleconnections in the geopotential height field in the Northern Hemisphere winter. Mon. Wea. Rev., 109 , 784812.

    • Search Google Scholar
    • Export Citation
  • White, G. H., 1980: Skewness, kurtosis, and extreme values of Northern Hemisphere geopotential heights. Mon. Wea. Rev., 108 , 14461455.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. Hoskins, M. Blackburn, and P. Berrisford, 2008: A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65 , 609626.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 471 219 53
PDF Downloads 220 47 9