Modulation of Australian Precipitation by Meridional Gradients in East Indian Ocean Sea Surface Temperature

Caroline C. Ummenhofer Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Caroline C. Ummenhofer in
Current site
Google Scholar
PubMed
Close
,
Alexander Sen Gupta Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Alexander Sen Gupta in
Current site
Google Scholar
PubMed
Close
,
Andréa S. Taschetto Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Andréa S. Taschetto in
Current site
Google Scholar
PubMed
Close
, and
Matthew H. England Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Matthew H. England in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study explores the impact of meridional sea surface temperature (SST) gradients across the eastern Indian Ocean on interannual variations in Australian precipitation. Atmospheric general circulation model (AGCM) experiments are conducted in which the sign and magnitude of eastern Indian Ocean SST gradients are perturbed. This results in significant rainfall changes for western and southeastern Australia. A reduction (increase) in the meridional SST gradient drives a corresponding response in the atmospheric thickness gradients and results in anomalous dry (wet) conditions over Australia. During simulated wet years, this seems to be due to westerly anomalies in the thermal wind over Australia and anomalous onshore moisture advection, with a suggestion that the opposite occurs during dry conditions. Thus, an asymmetry is seen in the magnitude of the forced circulation and precipitation response between the dry and wet simulations. To assess the relative contribution of the SST anomalies making up the meridional gradient, the SST pattern is decomposed into its constituent “poles,” that is, the eastern tropical pole off the northwest shelf of Australia versus the southern pole in the central subtropical Indian Ocean. Overall, the simulated Australian rainfall response is linear with regard to the sign and magnitude of the eastern Indian Ocean SST gradient. The tropical eastern pole has a larger impact on the atmospheric circulation and Australian precipitation changes relative to the southern subtropical pole. However, there is clear evidence of the importance of the southern pole in enhancing the Australian rainfall response, when occurring in conjunction with but of opposite sign to the eastern tropical pole. The observed relationship between the meridional SST gradient in the eastern Indian Ocean and rainfall over western and southeastern Australia is also analyzed for the period 1970–2005. The observed relationship is found to be consistent with the AGCM results.

Corresponding author address: Caroline Ummenhofer, Climate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia. Email: c.ummenhofer@unsw.edu.au

Abstract

This study explores the impact of meridional sea surface temperature (SST) gradients across the eastern Indian Ocean on interannual variations in Australian precipitation. Atmospheric general circulation model (AGCM) experiments are conducted in which the sign and magnitude of eastern Indian Ocean SST gradients are perturbed. This results in significant rainfall changes for western and southeastern Australia. A reduction (increase) in the meridional SST gradient drives a corresponding response in the atmospheric thickness gradients and results in anomalous dry (wet) conditions over Australia. During simulated wet years, this seems to be due to westerly anomalies in the thermal wind over Australia and anomalous onshore moisture advection, with a suggestion that the opposite occurs during dry conditions. Thus, an asymmetry is seen in the magnitude of the forced circulation and precipitation response between the dry and wet simulations. To assess the relative contribution of the SST anomalies making up the meridional gradient, the SST pattern is decomposed into its constituent “poles,” that is, the eastern tropical pole off the northwest shelf of Australia versus the southern pole in the central subtropical Indian Ocean. Overall, the simulated Australian rainfall response is linear with regard to the sign and magnitude of the eastern Indian Ocean SST gradient. The tropical eastern pole has a larger impact on the atmospheric circulation and Australian precipitation changes relative to the southern subtropical pole. However, there is clear evidence of the importance of the southern pole in enhancing the Australian rainfall response, when occurring in conjunction with but of opposite sign to the eastern tropical pole. The observed relationship between the meridional SST gradient in the eastern Indian Ocean and rainfall over western and southeastern Australia is also analyzed for the period 1970–2005. The observed relationship is found to be consistent with the AGCM results.

Corresponding author address: Caroline Ummenhofer, Climate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia. Email: c.ummenhofer@unsw.edu.au

Save
  • Abram, N. J., M. K. Gagan, J. E. Cole, W. S. Hantoro, and M. Mudelsee, 2008: Recent intensification of tropical climate variability in the Indian Ocean. Nature Geosci., 1 , 849853. doi:10.1038/ngeo357.

    • Search Google Scholar
    • Export Citation
  • Allan, R. J., and M. R. Haylock, 1993: Circulation features associated with the winter rainfall decrease in Southwestern Australia. J. Climate, 6 , 13561367.

    • Search Google Scholar
    • Export Citation
  • Alory, G., S. Wijffels, and G. Meyers, 2007: Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett., 34 , L02606. doi:10.1029/2006GL028044.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys. Res. Lett., 30 , 1821. doi:10.1029/2003GL017926.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., and T. Yamagata, 2001: Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett., 28 , 327330.

  • Black, E., J. Slingo, and K. R. Sperber, 2003: An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon. Wea. Rev., 131 , 7494.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2006: SAM and regional rainfall in IPCC AR4 models: Can anthropogenic forcing account for southwest Western Australian winter rainfall reduction? Geophys. Res. Lett., 33 , L24708. doi:10.1029/2006GL028037.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2008: Dynamics of late autumn rainfall reduction over southeastern Australia. Geophys. Res. Lett., 35 , L09708. doi:10.1029/2008GL033727.

    • Search Google Scholar
    • Export Citation
  • Cai, W., G. Shi, and Y. Li, 2005: Multidecadal fluctuations of winter rainfall over southwest Western Australia simulated in the CSIRO Mark 3 coupled model. Geophys. Res. Lett., 32 , L12701. doi:10.1029/2005GL022712.

    • Search Google Scholar
    • Export Citation
  • Cai, W., T. Cowan, and A. Sullivan, 2009: Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall. Geophys. Res. Lett., 36 , L11705. doi:10.1029/2009GL037604.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 21222143.

  • D’Arrigo, R., and R. Wilson, 2008: El Niño and Indian Ocean influences on Indonesian drought: Implications for forecasting rainfall and crop productivity. Int. J. Climatol., 28 , 611616.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Capotondi, R. Saravanan, and A. S. Phillips, 2006: Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, 19 , 24512481.

    • Search Google Scholar
    • Export Citation
  • Drosdowsky, W., 1993a: An analysis of Australian seasonal rainfall anomalies: 1950–1987. I: Spatial patterns. Int. J. Climatol., 13 , 130.

    • Search Google Scholar
    • Export Citation
  • Drosdowsky, W., 1993b: An analysis of Australian seasonal rainfall anomalies: 1950–1987. II: Temporal variability and teleconnection patterns. Int. J. Climatol., 13 , 111149.

    • Search Google Scholar
    • Export Citation
  • Drosdowsky, W., and L. E. Chambers, 2001: Near-global surface temperature anomalies as predictors of Australian seasonal rainfall. J. Climate, 14 , 16771687.

    • Search Google Scholar
    • Export Citation
  • England, M. H., C. C. Ummenhofer, and A. Santoso, 2006: Interannual rainfall extremes over southwest Western Australia linked to Indian Ocean climate variability. J. Climate, 19 , 19481969.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, C. S., and R. C. Balgovind, 1994: The influence of the Indian Ocean/Indonesian SST gradient on the Australian winter rainfall and circulation in an atmospheric GCM. Quart. J. Roy. Meteor. Soc., 120 , 923952.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, C. S., and J. S. Frederiksen, 1996: A theoretical model of Australian Northwest cloudband disturbances and Southern Hemisphere storm tracks: The role of SST anomalies. J. Atmos. Sci., 53 , 14101432.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, C. S., D. P. Rowell, R. C. Balgovind, and C. K. Folland, 1999: Multidecadal simulations of Australian rainfall variability: The role of SSTs. J. Climate, 12 , 357379.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and C. S. Frederiksen, 2007: Interdecadal changes in Southern Hemisphere winter storm track modes. Tellus, 59A , 599617.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., J. M. Caron, S. M. Yeager, K. W. Oleson, M. M. Holland, J. E. Truesdale, and P. J. Rasch, 2006: Simulation of the global hydrological cycle in the CCSM Community Atmosphere Model version 3 (CAM3): Mean features. J. Climate, 19 , 21992221.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 2007: Circulation mechanisms of climate anomalies in East Africa and the equatorial Indian Ocean. Dyn. Atmos. Oceans, 43 , 2535.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., D. W. J. Thompson, and M. C. Wheeler, 2007: Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J. Climate, 20 , 24522467.

    • Search Google Scholar
    • Export Citation
  • Hope, P. K., 2006: Projected future changes in synoptic systems influencing southwest Western Australia. Climate Dyn., 26 , 765780.

  • Hurrell, J. W., J. J. Hack, A. S. Phillips, J. Caron, and J. Yin, 2006: The dynamical simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21622183.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21 , 51455153.

    • Search Google Scholar
    • Export Citation
  • Ihara, C., Y. Kushnir, and M. A. Cane, 2008: Warming trend of the Indian Ocean SST and Indian Ocean Dipole from 1880 to 2004. J. Climate, 21 , 20352046.

    • Search Google Scholar
    • Export Citation
  • IOCI, 2002: Climate variability and change in south west Western Australia. Tech. Rep., Indian Ocean Climate Initiative Panel, Perth, Australia, 43 pp.

    • Search Google Scholar
    • Export Citation
  • Lavery, B., G. Joung, and N. Nicholls, 1997: An extended high-quality historical rainfall dataset for Australia. Aust. Meteor. Mag., 46 , 2738.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, D. M. Lawrence, A. Seth, E. K. Schneider, B. P. Kirtman, and D. Min, 2006: Monsoon regimes in the CCSM3. J. Climate, 19 , 24822495.

    • Search Google Scholar
    • Export Citation
  • Murphy, B. F., and B. Timbal, 2008: A review of recent climate variability and climate change in southeastern Australia. Int. J. Climatol., 28 , 859879.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1989: Sea surface temperatures and Australian winter rainfall. J. Climate, 2 , 965973.

  • Paciorek, C. S., J. S. Risbey, V. Ventura, and R. D. Rosen, 2002: Multiple indices of Northern Hemisphere cyclone activity, winters 1949–99. J. Climate, 15 , 15731590.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., G. T. Narisma, R. A. Pielke Sr., and N. J. Holbrook, 2004: Impact of land cover change on the climate of southwest Western Australia. J. Geophys. Res., 109 , D18109. doi:10.1029/2003JD004347.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, and D. P. Rowell, 2003: Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., 2002: Sensitivity of the southern African circulation to dipole sea-surface temperature patterns in the South Indian Ocean. Int. J. Climatol., 22 , 377393.

    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., M. J. Pook, P. C. McIntosh, C. C. Ummenhofer, G. Meyers, and M. J. Reeder, 2009: Variability of synoptic features associated with cool season rainfall in southeastern Australia. Int. J. Climatol., 29 , 15951613.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res., 25 , 151169.

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 , 360363.

    • Search Google Scholar
    • Export Citation
  • Santoso, A., 2005: Evolution of climate anomalies and variability of Southern Ocean water masses on interannual to centennial timescales. Ph.D. thesis, University of New South Wales, 326 pp.

  • Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Climate, 16 , 14951510.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24662477.

  • Timbal, B., and J. M. Arblaster, 2006: Land cover change as an additional forcing to explain the rainfall decline in the south west of Australia. Geophys. Res. Lett., 33 , L07717. doi:10.1029/2005GL025361.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., J. M. Arblaster, and S. Power, 2006: Attribution of the late-twentieth-century rainfall decline in southwest Australia. J. Climate, 19 , 20462062.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., A. Sen Gupta, M. J. Pook, and M. H. England, 2008: Anomalous rainfall over southwest Western Australia forced by Indian Ocean sea surface temperatures. J. Climate, 21 , 51135134.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., M. H. England, G. A. Meyers, P. C. McIntosh, M. J. Pook, J. S. Risbey, A. Sen Gupta, and A. S. Taschetto, 2009a: What causes Southeast Australia’s worst droughts? Geophys. Res. Lett., 36 , L04706. doi:10.1029/2008GL036801.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., A. Sen Gupta, M. H. England, and C. J. C. Reason, 2009b: Contributions of Indian Ocean sea surface temperatures to enhanced East African rainfall. J. Climate, 22 , 9931013.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20 , 43164340.

  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401 , 356360.

    • Search Google Scholar
    • Export Citation
  • Zelle, H., G. J. van Oldenborgh, G. Burgers, and H. Dijkstra, 2005: El Niño and greenhouse warming: Results from ensemble simulations with the NCAR CCSM. J. Climate, 18 , 46694683.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., and H. Wang, 2006: Toward mitigating the double ITCZ problem in NCAR CCSM3. Geophys. Res. Lett., 33 , L06709. doi:10.1029/2005GL025229.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1387 779 153
PDF Downloads 284 69 8