• Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50 , 20382053.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and I. Orlanski, 1994: On energy flux and group velocity of waves in baroclinic flows. J. Atmos. Sci., 51 , 38233828.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15 , 21632183.

  • Charney, J. G., 1947: The dynamics of long waves in baroclinic westerly current. J. Meteor., 4 , 136162.

  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 , 3352.

  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22 , 123.

  • Hazeleger, W., R. Seager, M. Visbeck, N. Naik, and K. Rogers, 2001: Impact of the midlatitude storm track on the upper Pacific Ocean. J. Phys. Oceanogr., 31 , 616636.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Ting, and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15 , 21252144.

  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci., 47 , 18541864.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kushner, P. J., and I. M. Held, 1998: A test, using atmospheric data, of a method for estimating oceanic eddy diffusivity. Geophys. Res. Lett., 25 , 42134216.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Blade, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15 , 22332256.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45 , 27182743.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and K. M. Lau, 1984: The structure and energetics of midlatitude disturbances accompanying cold air outbreaks over East Asia. Mon. Wea. Rev., 112 , 13091327.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37 , 16481654.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7 , 157167.

  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452 , 206209.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49 , 16291641.

  • Nakamura, H., and T. Sampe, 2002: Trapping of synoptic-scale disturbances into North-Pacific subtropical jet core in midwinter. Geophys. Res. Lett., 29 , 1761. doi:10.1029/2002GL015535.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17 , 18281844.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams, and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–345.

    • Search Google Scholar
    • Export Citation
  • Niehaus, M. C. W., 1980: Instability of non-zonal baroclinic flows. J. Atmos. Sci., 37 , 14471463.

  • Panetta, R. L., I. M. Held, and R. T. Pierrehumbert, 1987: External Rossby waves in the two-layer model. J. Atmos. Sci., 44 , 29242933.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1986: Three-dimensional propagation of transient quasi-geostrophic eddies and its relationship with the eddy forcing of the time-mean flow. J. Atmos. Sci., 43 , 16571678.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 1983: The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of ‘blocking’ flow fields. Quart. J. Roy. Meteor. Soc., 109 , 737761.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 151 62 6
PDF Downloads 103 30 1

Dominant Anomaly Patterns in the Near-Surface Baroclinicity and Accompanying Anomalies in the Atmosphere and Oceans. Part I: North Atlantic Basin

View More View Less
  • 1 Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan
Restricted access

Abstract

Variability in the monthly mean flow and storm track in the North Atlantic basin is examined with a focus on the near-surface baroclinicity, B = Bxi + Byj. Dominant patterns of anomalous B found from empirical orthogonal function (EOF) analyses generally show patterns of shift and changes in the strength of B. Composited anomalies in the monthly mean wind at various pressure levels based on the signals in the EOFs display robust accompanying anomalies in the mean flow up to 50 hPa in the winter and up to 100 hPa in other seasons. Anomalous eddy fields accompanying the anomalous Bx patterns exhibit, broadly speaking, structures anticipated from linear theories of baroclinic instabilities and suggest a tendency for anomalous wave fluxes to accelerate/decelerate the surface westerly accordingly. Atmospheric anomalies accompanying By anomalies have patterns different from those that accompany Bx anomalies but are as large as those found for Bx. Anomalies in the sea surface temperature (SST) found for the anomalous patterns of Bx often show large values of small spatial scales along the Gulf Stream (GS), indicating that a meridional shift in the position of the GS and/or changes in the heat transport by the GS may be responsible for the anomalous Bx and concomitant tropospheric and lower-stratospheric anomalies. Anomalies in the net surface heat flux, SST in preceding months, and meridional eddy heat flux in the lower troposphere support this interpretation.

* Current affiliation: Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan

Corresponding author address: Mototaka Nakamura, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa-Pref, 236-0001, Japan. Email: moto@jamstec.go.jp

Abstract

Variability in the monthly mean flow and storm track in the North Atlantic basin is examined with a focus on the near-surface baroclinicity, B = Bxi + Byj. Dominant patterns of anomalous B found from empirical orthogonal function (EOF) analyses generally show patterns of shift and changes in the strength of B. Composited anomalies in the monthly mean wind at various pressure levels based on the signals in the EOFs display robust accompanying anomalies in the mean flow up to 50 hPa in the winter and up to 100 hPa in other seasons. Anomalous eddy fields accompanying the anomalous Bx patterns exhibit, broadly speaking, structures anticipated from linear theories of baroclinic instabilities and suggest a tendency for anomalous wave fluxes to accelerate/decelerate the surface westerly accordingly. Atmospheric anomalies accompanying By anomalies have patterns different from those that accompany Bx anomalies but are as large as those found for Bx. Anomalies in the sea surface temperature (SST) found for the anomalous patterns of Bx often show large values of small spatial scales along the Gulf Stream (GS), indicating that a meridional shift in the position of the GS and/or changes in the heat transport by the GS may be responsible for the anomalous Bx and concomitant tropospheric and lower-stratospheric anomalies. Anomalies in the net surface heat flux, SST in preceding months, and meridional eddy heat flux in the lower troposphere support this interpretation.

* Current affiliation: Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan

Corresponding author address: Mototaka Nakamura, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa-Pref, 236-0001, Japan. Email: moto@jamstec.go.jp

Save