Error Structure and Atmospheric Temperature Trends in Observations from the Microwave Sounding Unit

Cheng-Zhi Zou Center for Satellite Applications and Research, NOAA/NESDIS, Camp Springs, Maryland

Search for other papers by Cheng-Zhi Zou in
Current site
Google Scholar
PubMed
Close
,
Mei Gao Center for Satellite Applications and Research, NOAA/NESDIS, Camp Springs, Maryland, and Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

Search for other papers by Mei Gao in
Current site
Google Scholar
PubMed
Close
, and
Mitchell D. Goldberg Center for Satellite Applications and Research, NOAA/NESDIS, Camp Springs, Maryland

Search for other papers by Mitchell D. Goldberg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Microwave Sounding Unit (MSU) onboard the National Oceanic and Atmospheric Administration polar-orbiting satellites measures the atmospheric temperature from the surface to the lower stratosphere under all weather conditions, excluding precipitation. Although designed primarily for monitoring weather processes, the MSU observations have been extensively used for detecting climate trends, and calibration errors are a major source of uncertainty. To reduce this uncertainty, an intercalibration method based on the simultaneous nadir overpass (SNO) matchups for the MSU instruments on satellites NOAA-10, -11, -12, and -14 was developed. Due to orbital geometry, the SNO matchups are confined to the polar regions, where the brightness temperature range is slightly smaller than the global range. Nevertheless, the resulting calibration coefficients are applied globally to the entire life cycle of an MSU satellite.

Such intercalibration reduces intersatellite biases by an order of magnitude compared to prelaunch calibration and, thus, results in well-merged time series for the MSU channels 2, 3, and 4, which respectively represent the deep layer temperature of the midtroposphere (T2), tropopause (T3), and lower stratosphere (T4). Focusing on the global atmosphere over ocean surfaces, trends for the SNO-calibrated T2, T3, and T4 are, respectively, 0.21 ± 0.07, 0.08 ± 0.08, and −0.38 ± 0.27 K decade−1 from 1987 to 2006. These trends are independent of the number of limb-corrected footprints used in the dataset, and trend differences are marginal for varying bias correction techniques for merging the overlapping satellites on top of the SNO calibration.

The spatial pattern of the trends reveals the tropical midtroposphere to have warmed at a rate of 0.28 ± 0.19 K decade−1, while the Arctic atmosphere warmed 2 to 3 times faster than the global average. The troposphere and lower stratosphere, however, cooled across the southern Indian and Atlantic Oceans adjacent to the Antarctic continent. To remove the stratospheric cooling effect in T2, channel trends from T2 and T3 (T23) and T2 and T4 (T24) were combined. The trend patterns for T23 and T24 are in close agreement, suggesting internal consistencies for the trend patterns of the three channels.

Corresponding author address: Dr. Cheng-Zhi Zou, Room 712, 5200 Auth Road, Center for Satellite Applications and Research, NOAA/NESDIS, NOAA Science Center, Camp Springs, MD 20746. Email: cheng-zhi.zou@noaa.gov

Abstract

The Microwave Sounding Unit (MSU) onboard the National Oceanic and Atmospheric Administration polar-orbiting satellites measures the atmospheric temperature from the surface to the lower stratosphere under all weather conditions, excluding precipitation. Although designed primarily for monitoring weather processes, the MSU observations have been extensively used for detecting climate trends, and calibration errors are a major source of uncertainty. To reduce this uncertainty, an intercalibration method based on the simultaneous nadir overpass (SNO) matchups for the MSU instruments on satellites NOAA-10, -11, -12, and -14 was developed. Due to orbital geometry, the SNO matchups are confined to the polar regions, where the brightness temperature range is slightly smaller than the global range. Nevertheless, the resulting calibration coefficients are applied globally to the entire life cycle of an MSU satellite.

Such intercalibration reduces intersatellite biases by an order of magnitude compared to prelaunch calibration and, thus, results in well-merged time series for the MSU channels 2, 3, and 4, which respectively represent the deep layer temperature of the midtroposphere (T2), tropopause (T3), and lower stratosphere (T4). Focusing on the global atmosphere over ocean surfaces, trends for the SNO-calibrated T2, T3, and T4 are, respectively, 0.21 ± 0.07, 0.08 ± 0.08, and −0.38 ± 0.27 K decade−1 from 1987 to 2006. These trends are independent of the number of limb-corrected footprints used in the dataset, and trend differences are marginal for varying bias correction techniques for merging the overlapping satellites on top of the SNO calibration.

The spatial pattern of the trends reveals the tropical midtroposphere to have warmed at a rate of 0.28 ± 0.19 K decade−1, while the Arctic atmosphere warmed 2 to 3 times faster than the global average. The troposphere and lower stratosphere, however, cooled across the southern Indian and Atlantic Oceans adjacent to the Antarctic continent. To remove the stratospheric cooling effect in T2, channel trends from T2 and T3 (T23) and T2 and T4 (T24) were combined. The trend patterns for T23 and T24 are in close agreement, suggesting internal consistencies for the trend patterns of the three channels.

Corresponding author address: Dr. Cheng-Zhi Zou, Room 712, 5200 Auth Road, Center for Satellite Applications and Research, NOAA/NESDIS, NOAA Science Center, Camp Springs, MD 20746. Email: cheng-zhi.zou@noaa.gov

Save
  • Cao, C., M. Weinreb, and H. Xu, 2004: Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J. Atmos. Oceanic Technol., 21 , 537542.

    • Search Google Scholar
    • Export Citation
  • Christy, J. R., R. W. Spencer, and E. S. Lobel, 1998: Analysis of the merging procedure for the MSU daily temperature time series. J. Climate, 11 , 20162041.

    • Search Google Scholar
    • Export Citation
  • Christy, J. R., R. W. Spencer, and W. D. Braswell, 2000: MSU tropospheric temperatures: Dataset construction and radiosonde comparisons. J. Atmos. Oceanic Technol., 17 , 11531170.

    • Search Google Scholar
    • Export Citation
  • Christy, J. R., R. W. Spencer, W. B. Norris, W. D. Braswell, and D. E. Parker, 2003: Error estimates of version 5.0 of MSU–AMSU bulk atmospheric temperature. J. Atmos. Oceanic Technol., 20 , 613629.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35 , L01703. doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and C. M. Johanson, 2004: Stratospheric influence on MSU-derived tropospheric temperature trends: A direct error analysis. J. Climate, 17 , 46364640.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and C. M. Johanson, 2005: Satellite-derived vertical dependence of tropical tropospheric temperature trends. Geophys. Res. Lett., 32 , L10703. doi:10.1029/2004GL022266.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., C. M. Johanson, S. G. Warren, and D. J. Seidel, 2004: Contribution of stratospheric cooling to satellite-inferred tropospheric trends. Nature, 429 , 5558.

    • Search Google Scholar
    • Export Citation
  • Goldberg, M. D., and H. E. Fleming, 1995: An algorithm to generate deep-layer temperature from microwave satellite observations for the purpose of monitoring climate change. J. Climate, 8 , 9931004.

    • Search Google Scholar
    • Export Citation
  • Goldberg, M. D., D. S. Crosby, and L. Zhou, 2001: The limb adjustment of AMSU-A observations: Methodology and validation. J. Appl. Meteor., 40 , 7083.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., K. Y. Vinnikov, M. D. Goldberg, J. T. Sullivan, and J. D. Tarpley, 2004: Calibration of multisatellite observations for climate studies: Microwave Sounding Unit (MSU). J. Geophys. Res., 109 , D24104. doi:10.1029/2004JD005079.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and K. E. Trenberth, 1997: Spurious trends in satellite MSU temperatures from merging different satellite records. Nature, 386 , 164167.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and K. E. Trenberth, 1998: Difficulties in obtaining reliable temperature trends: Reconciling the surface and satellite microwave sounding unit records. J. Climate, 11 , 945967.

    • Search Google Scholar
    • Export Citation
  • Johanson, C. M., and Q. Fu, 2006: Robustness of tropospheric temperature trends from MSU channels 2 and 4. J. Climate, 19 , 42344242.

  • Kidwell, K. B., Ed. 1998: NOAA Polar Orbiter Data user’s guide. [Available online at http://www2.ncdc.noaa.gov/docs/podug/index.htm.].

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., and F. J. Wentz, 2005: The effect of diurnal correction on the satellite-derived lower tropospheric temperature. Science, 309 , 15481551.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., M. C. Schabel, and F. J. Wentz, 2003: A reanalysis of the MSU channel 2 tropospheric temperature record. J. Climate, 16 , 36503664.

    • Search Google Scholar
    • Export Citation
  • Mo, T., 1995: A study of the microwave sounding unit on the NOAA-12 satellite. IEEE Trans. Geosci. Remote Sens., 33 , 11411152.

  • Mo, T., M. D. Goldberg, D. S. Crosby, and Z. Cheng, 2001: Recalibration of the NOAA microwave sounding unit. J. Geophys. Res., 106 , 1014510150.

    • Search Google Scholar
    • Export Citation
  • Prabhakara, C., and R. Iacovazzi Jr., 1999: Comments on “Analysis of the merging procedure for the MSU daily temperature time series.”. J. Climate, 12 , 33313334.

    • Search Google Scholar
    • Export Citation
  • Prabhakara, C., R. Iaccovazzi Jr., J-M. Yoo, and G. Dalu, 2000: Global warming: Evidence from satellite observations. Geophys. Res. Lett., 27 , 35173520.

    • Search Google Scholar
    • Export Citation
  • Randall, R. M., and B. M. Herman, 2008: Using limited time period trends as a means to determine attribution of discrepancies in microwave sounding unit–derived tropospheric temperature time series. J. Geophys. Res., 113 , D05105. doi:10.1029/2007JD008864.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in marine temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19 , 446469.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2005: Amplification of surface temperature trends and variability in the tropical atmosphere. Science, 309 , 15511556.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., H. M. Woolf, P. G. Abel, C. M. Hayden, M. Chalfant, and N. Grody, 1974: NIMBUS-5 sounder data processing system. Part I: Measurement characteristics and data reduction procedures. NOAA Tech. Memo. NESS 57, 99 pp.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and J. R. Christy, 1992a: Precision and radiosonde validation of satellite gridpoint temperature anomalies. Part I: MSU channel 2. J. Climate, 5 , 847857.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and J. R. Christy, 1992b: Precision and radiosonde validation of satellite gridpoint temperature anomalies. Part II: Tropospheric retrieval and trends during 1979–90. J. Climate, 5 , 858866.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., J. R. Christy, W. D. Braswell, and W. B. Norris, 2006: Estimation of tropospheric temperature trends from MSU channels 2 and 4. J. Atmos. Oceanic Technol., 23 , 417423.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., and J. H. Carlson, 1979: Atmospheric lapse rate regimes and their parameterization. J. Atmos. Sci., 36 , 415423.

  • Trenberth, K. E., and J. W. Hurrell, 1997: How accurate are satellite “thermometers”? Nature, 389 , 342343.

  • Vinnikov, K. Y., and N. C. Grody, 2003: Global warming trend of mean tropospheric temperature observed by satellites. Science, 302 , 269272.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Y., N. C. Grody, A. Robock, R. J. Stouffer, P. D. Jones, and M. D. Goldberg, 2006: Temperature trends at the surface and in the troposphere. J. Geophys. Res., 111 , D03106. doi:10.1029/2005JD006392.

    • Search Google Scholar
    • Export Citation
  • Walker, D. K., K. J. Coakley, and J. D. Splett, 2004: Nonlinear modeling of tunnel diode detectors. Proc. IEEE 2004 Intl. Geoscience and Remote Sensing Symp. (IGARSS'04), Vol. 6, Anchorage, AK, IEEE, 3969–3972, doi:10.1109/IGARSS.2004.1369997.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and M. Schabel, 1998: Effects of satellite orbital decay on MSU lower tropospheric temperature trends. Nature, 394 , 661664.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., B. D. Santer, and J. R. Lanzante, 2006: Statistical issues regarding trends. Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences, T. R. Karl et al., Eds., Climate Change Science Program and Subcommittee on Global Change Research, 129–139. [Available online at http://www.climatescience.gov/Library/sap/sap1-1/finalreport/sap1-1-final-all.pdf.].

    • Search Google Scholar
    • Export Citation
  • Zou, C-Z., M. D. Goldberg, Z. Cheng, N. C. Grody, J. T. Sullivan, C. Cao, and D. Tarpley, 2006: Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. J. Geophys. Res., 111 , D19114. doi:10.1029/2005JD006798.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 332 118 17
PDF Downloads 196 64 9