Homogenization of Temperature Series via Pairwise Comparisons

Matthew J. Menne NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by Matthew J. Menne in
Current site
Google Scholar
PubMed
Close
and
Claude N. Williams Jr. NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by Claude N. Williams Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An automated homogenization algorithm based on the pairwise comparison of monthly temperature series is described. The algorithm works by forming pairwise difference series between serial monthly temperature values from a network of observing stations. Each difference series is then evaluated for undocumented shifts, and the station series responsible for such breaks is identified automatically. The algorithm also makes use of station history information, when available, to improve the identification of artificial shifts in temperature data. In addition, an evaluation is carried out to distinguish trend inhomogeneities from abrupt shifts. When the magnitude of an apparent shift attributed to a particular station can be reliably estimated, an adjustment is made for the target series. The pairwise algorithm is shown to be robust and efficient at detecting undocumented step changes under a variety of simulated scenarios with step- and trend-type inhomogeneities. Moreover, the approach is shown to yield a lower false-alarm rate for undocumented changepoint detection relative to the more common use of a reference series. Results from the algorithm are used to assess evidence for trend inhomogeneities in U.S. monthly temperature data.

Corresponding author address: Dr. Matthew Menne, 151 Patton Avenue, NOAA/National Climatic Data Center, Asheville, NC 28801. Email: matthew.menne@noaa.gov

Abstract

An automated homogenization algorithm based on the pairwise comparison of monthly temperature series is described. The algorithm works by forming pairwise difference series between serial monthly temperature values from a network of observing stations. Each difference series is then evaluated for undocumented shifts, and the station series responsible for such breaks is identified automatically. The algorithm also makes use of station history information, when available, to improve the identification of artificial shifts in temperature data. In addition, an evaluation is carried out to distinguish trend inhomogeneities from abrupt shifts. When the magnitude of an apparent shift attributed to a particular station can be reliably estimated, an adjustment is made for the target series. The pairwise algorithm is shown to be robust and efficient at detecting undocumented step changes under a variety of simulated scenarios with step- and trend-type inhomogeneities. Moreover, the approach is shown to yield a lower false-alarm rate for undocumented changepoint detection relative to the more common use of a reference series. Results from the algorithm are used to assess evidence for trend inhomogeneities in U.S. monthly temperature data.

Corresponding author address: Dr. Matthew Menne, 151 Patton Avenue, NOAA/National Climatic Data Center, Asheville, NC 28801. Email: matthew.menne@noaa.gov

Save
  • Alexandersson, H., 1986: A homogeneity test applied to precipitation data. J. Climatol, 6 , 661675.

  • Alexandersson, H., and A. Moberg, 1997: Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. Int. J. Climatol., 17 , 2534.

    • Search Google Scholar
    • Export Citation
  • Begert, M., T. Schlegel, and W. Kirchhofer, 2005: Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int. J. Climatol., 25 , 6580.

    • Search Google Scholar
    • Export Citation
  • Brunet, M., and Coauthors, 2007: Temporal and spatial temperature variability and change over Spain during 1850–2003. J. Geophys. Res, 112 , D12117. doi:10.1029/2006JD008249.

    • Search Google Scholar
    • Export Citation
  • Carretero, J. C., and Coauthors, 1998: Changing waves and storms in the northeast Atlantic? Bull. Amer. Meteor. Soc., 79 , 741760.

  • Caussinus, H., and O. Mestre, 2004: Detection and correction of artificial shifts in climate series. J. Roy. Stat. Soc., 53C , 405425.

    • Search Google Scholar
    • Export Citation
  • Christy, J. R., W. B. Norris, K. Redmond, and K. P. Gallo, 2006: Methodology and results of calculating central California surface temperature trends: Evidence of human-induced climate change? J. Climate, 19 , 548563.

    • Search Google Scholar
    • Export Citation
  • Conrad, V., and L. W. Pollak, 1962: Methods in Climatology. Harvard University Press, 459 pp.

  • DeGaetano, A. T., 2006: Attributes of several methods for detecting discontinuities in mean temperature series. J. Climate, 19 , 838853.

    • Search Google Scholar
    • Export Citation
  • Della-Marta, P. M., and H. Wanner, 2006: A method of homogenizing the extremes and mean of daily temperature measurements. J. Climate, 19 , 41794197.

    • Search Google Scholar
    • Export Citation
  • Ducré-Robitaille, J-F., L. A. Vincent, and G. Boulet, 2003: Comparison of techniques for detection of discontinuities in temperature series. Int. J. Climatol., 23 , 10871101.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., T. R. Karl, E. H. Mason, P. Y. Hughes, and D. P. Bowman, 1996: United States Historical Climatology Network (U.S. HCN) monthly temperature and precipitation data. ORNL/CDIAC-87, NDP-019/R3, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, 280 pp.

    • Search Google Scholar
    • Export Citation
  • González-Rouco, J. F., J. L. Jiménez, V. Quesada, and F. Valero, 2001: Quality control and homogeneity of precipitation data in the southwest of Europe. J. Climate, 14 , 964978.

    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., and C. B. Baker, 1996: Exploratory analysis of the difference between temperature observations recorded by ASOS and conventional methods. Bull. Amer. Meteor. Soc., 77 , 28652873.

    • Search Google Scholar
    • Export Citation
  • Hanssen-Bauer, I., and E. J. Førland, 1994: Homogenizing long Norwegian precipitation series. J. Climate, 7 , 10011013.

  • Hawkins, D. M., 1976: Point estimation of the parameters of a piecewise regression model. Appl. Stat., 25 , 5157.

  • Hubbard, K. G., and X. Lin, 2006: Reexamination of instrument change effects in the U.S. Historical Climatology Network. Geophys. Res. Lett., 33 , L15710. doi:10.1029/2006GL027069.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., S. C. B. Raper, P. M. Kellyo, T. M. L. Wigley, R. S. Bradley, and H. F. Diaz, 1986: Northern Hemisphere surface air temperature variations: 1851–1984. J. Climate Appl. Meteor., 25 , 161179.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., M. Cai, H. Li, and J. Tobin, 2006: Estimation of the impact of land-surface forcings on temperature trends in eastern United States. J. Geophys. Res., 111 , D06106. doi:10.1029/2005JD006555.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and C. N. Williams Jr., 1987: An approach to adjusting climatological time series for discontinuous inhomogeneities. J. Climate Appl. Meteor., 26 , 17441763.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., H. F. Diaz, and G. Kukla, 1988: Urbanization: Its detection and effect in the United States climate record. J. Climate, 1 , 10991123.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111 , 4659.

    • Search Google Scholar
    • Export Citation
  • Lu, Q., and R. B. Lund, 2007: Simple linear regression with multiple level shifts. Can. J. Stat., 35 , 447458.

  • Lund, R., and J. Reeves, 2002: Detection of undocumented changepoints: A revision of the two-phase regression model. J. Climate, 15 , 25472554.

    • Search Google Scholar
    • Export Citation
  • Lund, R., C. Gallagher, X. L. Wang, Y. Feng, Q. Lu, and J. Reeves, 2007: Changepoint detection in periodic and autocorrelated time series. J. Climate, 20 , 51785190.

    • Search Google Scholar
    • Export Citation
  • McCarthy, M. P., H. A. Titchner, P. W. Thorne, S. F. B. Tett, L. Haimberger, and D. E. Parker, 2008: Assessing bias and uncertainty in the HadAT-adjusted radiosonde climate record. J. Climate, 21 , 817832.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and C. E. Duchon, 2001: A method for monthly detection of inhomogeneities and errors in daily maximum and minimum temperatures. J. Atmos. Oceanic Technol., 18 , 11361149.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and C. N. Williams Jr., 2005: Detection of undocumented changepoints using multiple test statistics and composite reference series. J. Climate, 18 , 42714286.

    • Search Google Scholar
    • Export Citation
  • Parker, D. E., 2006: A demonstration that large-scale warming is not urban. J. Climate, 19 , 28822895.

  • Peterson, T. C., and T. W. Owen, 2005: Urban heat island assessment: Metadata are important. J. Climate, 18 , 26372646.

  • Peterson, T. C., and Coauthors, 1998a: Homogeneity adjustments of in situ atmospheric climate data: A review. Int. J. Climatol., 18 , 14931517.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., T. R. Karl, P. F. Jamason, R. Knight, and D. R. Easterling, 1998b: First difference method: Maximizing station density for the calculation of the long-term global temperature change. J. Geophys. Res., 103 , 2596725974.

    • Search Google Scholar
    • Export Citation
  • Pielke Sr., R. A., and Coauthors, 2007: Documentation of uncertainties and bias associated with surface temperature measurement sites for climate change assessment. Bull. Amer. Meteor. Soc., 88 , 913928.

    • Search Google Scholar
    • Export Citation
  • Quayle, R. G., D. R. Easterling, T. R. Karl, and P. Y. Hughes, 1991: Effects of recent thermometer changes in the Cooperative Station Network. Bull. Amer. Meteor. Soc., 72 , 17181723.

    • Search Google Scholar
    • Export Citation
  • Reeves, J., J. Chen, X. L. Wang, R. Lund, and Q. Lu, 2007: A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteor. Climatol., 46 , 900915.

    • Search Google Scholar
    • Export Citation
  • Schwarz, G., 1978: Estimating the dimension of a model. Ann. Stat., 6 , 461464.

  • Slonosky, V. C., P. D. Jones, and T. D. Davies, 1999: Homogenization techniques for European monthly mean surface pressure series. J. Climate, 12 , 26582672.

    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., D. E. Parker, J. R. Christy, and C. A. Mears, 2005: Uncertainties in climate trends: Lessons from upper-air temperature records. Bull. Amer. Meteor. Soc., 86 , 14371442.

    • Search Google Scholar
    • Export Citation
  • Trewin, B. C., and A. C. F. Trevitt, 1996: The development of composite temperature records. Int. J. Climatol., 16 , 12271242.

  • Tukey, J. W., 1977: Exploratory Data Analysis. Addison-Wesley, 688 pp.

  • Vincent, L. A., 1998: A technique for the identification of inhomogeneities in Canadian temperature series. J. Climate, 11 , 10941104.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., 2003: Comments on “Detection of undocumented changepoints: A revision of the two-phase regression model.”. J. Climate, 16 , 33833385.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3883 1300 197
PDF Downloads 1708 597 78