Evaluation of the Daylight Cycle of Model-Predicted Cloud Amount and Condensed Water Path over Europe with Observations from MSG SEVIRI

R. A. Roebeling Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by R. A. Roebeling in
Current site
Google Scholar
PubMed
Close
and
E. van Meijgaard Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by E. van Meijgaard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The evaluation of the diurnal cycle of cloud amount (CA) and cloud condensed water path (CWP) as predicted by climate models receives relatively little attention, mostly because of the lack of observational data capturing the diurnal cycle of such quantities. The Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat-8 satellite is the first instrument able to provide accurate information on diurnal cycles during daylight hours of cloud properties over land and ocean surfaces. This paper evaluates the daylight cycle of CA and CWP as predicted by the Regional Atmospheric Climate Model version 2 (RACMO2), using corresponding SEVIRI retrievals. The study is done for Europe using hourly cloud properties retrievals from SEVIRI during the summer months from May to September 2004.

The results of this study show that SEVIRI-retrieved daylight cycles of CA and CWP provide a powerful tool for identifying climate model deficiencies. Over Europe the SEVIRI retrievals of cloud condensed water paths comprise about 80% liquid water and about 20% ice water. The daylight cycles of CA and CWP from SEVIRI show large spatial variations in their mean values and time of daily maximum and daytime-normalized amplitude. In general, RACMO2 overestimates CWP by about 30% and underestimates CA by about 20% as compared to SEVIRI. The largest amplitudes are observed in the Mediterranean and northern Africa. For the greater part of the ocean and coastal areas the time of daily maximum CWP is found during morning, whereas over land this maximum is found after local solar noon. These features are reasonably well captured by RACMO2. In the Mediterranean and continental Europe RACMO2 tends to predict maximum CWP associated with convection to occur about two hours earlier than SEVIRI indicates.

Corresponding author address: R. A. Roebeling, P.O. Box 201, KNMI, 3730 AE De Bilt, Netherlands. Email: roebelin@knmi.nl

Abstract

The evaluation of the diurnal cycle of cloud amount (CA) and cloud condensed water path (CWP) as predicted by climate models receives relatively little attention, mostly because of the lack of observational data capturing the diurnal cycle of such quantities. The Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat-8 satellite is the first instrument able to provide accurate information on diurnal cycles during daylight hours of cloud properties over land and ocean surfaces. This paper evaluates the daylight cycle of CA and CWP as predicted by the Regional Atmospheric Climate Model version 2 (RACMO2), using corresponding SEVIRI retrievals. The study is done for Europe using hourly cloud properties retrievals from SEVIRI during the summer months from May to September 2004.

The results of this study show that SEVIRI-retrieved daylight cycles of CA and CWP provide a powerful tool for identifying climate model deficiencies. Over Europe the SEVIRI retrievals of cloud condensed water paths comprise about 80% liquid water and about 20% ice water. The daylight cycles of CA and CWP from SEVIRI show large spatial variations in their mean values and time of daily maximum and daytime-normalized amplitude. In general, RACMO2 overestimates CWP by about 30% and underestimates CA by about 20% as compared to SEVIRI. The largest amplitudes are observed in the Mediterranean and northern Africa. For the greater part of the ocean and coastal areas the time of daily maximum CWP is found during morning, whereas over land this maximum is found after local solar noon. These features are reasonably well captured by RACMO2. In the Mediterranean and continental Europe RACMO2 tends to predict maximum CWP associated with convection to occur about two hours earlier than SEVIRI indicates.

Corresponding author address: R. A. Roebeling, P.O. Box 201, KNMI, 3730 AE De Bilt, Netherlands. Email: roebelin@knmi.nl

Save
  • Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103 , 32141–32157.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and Coauthors, 2000: FIRE Arctic Clouds Experiment. Bull. Amer. Meteor. Soc., 81 , 5–29.

  • de Bruijn, C., and E. van Meijgaard, 2005: Verification of HIRLAM with ECMWF physics compared with HIRLAM reference versions. HIRLAM Tech. Rep.63, 39 pp.

    • Search Google Scholar
    • Export Citation
  • De Haan, J. F., P. B. Bosma, and J. W. Hovenier, 1987: The adding method for multiple scattering calculations of polarized light. Astron. Astrophys., 183 , 371–391.

    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., 2003: Ice-cloud effective particle size parameterization based on combined lidar, radar reflectivity, and mean Doppler velocity measurements. J. Geophys. Res., 108 , 4573. doi:10.1029/2003JD003469.

    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., and A. C. A. P. van Lammeren, 2001: Cloud effective particle size and water content profile retrievals using combined lidar and radar observations. 1. Theory and simulations. J. Geophys. Res., 106 , 27425–27448.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., and J. Teixeira, 2001: Comparison of the ECMWF reanalysis with FIRE I observations: Diurnal variation of marine stratocumulus. J. Climate, 14 , 1466–1478.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., and Coauthors, 2004: Observations and numerical simulations of the diurnal cycle of the EUROCS stratocumulus case. Quart. J. Roy. Meteor. Soc., 130 , 3269–3296. doi:10.1256/qj.03.139.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. E. Hare, and J. B. Snider, 1990: An eight-month sample of marine stratocumulus cloud fraction, albedo, and integrated liquid water. J. Climate, 3 , 847–864.

    • Search Google Scholar
    • Export Citation
  • Feijt, A., P. de Valk, and S. van der Veen, 2000: Cloud detection using Meteosat imagery and numerical weather prediction model data. J. Appl. Meteor., 39 , 1017–1030.

    • Search Google Scholar
    • Export Citation
  • Gaussiat, N., R. J. Hogan, and A. J. Illingworth, 2007: Accurate liquid water path retrieval from low-cost microwave radiometers using additional information from lidar and operational forecast models. J. Atmos. Oceanic Technol., 24 , 1562–1575.

    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., and S. A. Christopher, 1999: Daytime variation of marine stratocumulus microphysical properties as observed from geostationary satellite. Geophys. Res. Lett., 26 , 1723–1726.

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, R. Welch, A. White, and J. Chou, 1995: Validation of satellite retrievals of cloud microphysics and liquid water path using observations from FIRE. J. Atmos. Sci., 52 , 4183–4195.

    • Search Google Scholar
    • Export Citation
  • Hess, M., R. B. A. Koelemeijer, and P. Stammes, 1998: Scattering matrices of imperfect hexagonal ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 60 , 301–308.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. P. Mittermaier, and A. J. Illingworth, 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteor. Climatol., 45 , 301–317.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2007: Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88 , 883–898.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., and A. P. Siebesma, 2003: A new subcloud model for mass-flux convection schemes: Influence on triggering, updraft properties, and model climate. Mon. Wea. Rev., 131 , 2765–2778.

    • Search Google Scholar
    • Export Citation
  • Jolivet, D., and A. J. Feijt, 2005: Quantification of the accuracy of liquid water path fields derived from NOAA 16 advanced very high resolution radiometer over three ground stations using microwave radiometers. J. Geophys. Res., 110 , D11204. doi:10.1029/2004JD005205.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riedi, S. A. Ackerman, and K-N. Liou, 2004: Remote sensing of liquid water and ice cloud optical thickness, and effective radius in the Arctic: Application of airborne multispectral MAS data. J. Atmos. Oceanic Technol., 21 , 857–875.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., B. van den Hurk, E. van Meijgaard, A. P. van Ulden, and J. Cuijpers, 2003: Simulation of present-day climate in RACMO2: First results and model developments. KNMI Tech. Rep. 252, 24 pp.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and Coauthors, 2004: The diurnal cycle of shallow cumulus clouds over land: A single-column model intercomparison study. Quart. J. Roy. Meteor. Soc., 130 , 3339–3364.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., 1989: Viewing zenith angle dependence of cloudiness determined from coincident GOES East and GOES West data. J. Geophys. Res., 94 , (D2). 2303–2320.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., and T. Nakajima, 1995: Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for the FIRE and ASTEX regions. J. Atmos. Sci., 52 , 4043–4059.

    • Search Google Scholar
    • Export Citation
  • O’Dell, C. W., F. J. Wentz, and R. Bennartz, 2008: Cloud liquid water path from satellite-based passive microwave observations: A new climatology over the global oceans. J. Climate, 21 , 1721–1739.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459–473.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001: Radiative forcing of climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 349–416.

    • Search Google Scholar
    • Export Citation
  • Roebeling, R. A., A. J. Feijt, and P. Stammes, 2006a: Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J. Geophys. Res., 111 , D20210. doi:10.1029/2005JD006990.

    • Search Google Scholar
    • Export Citation
  • Roebeling, R. A., N. A. J. Schutgens, and A. J. Feijt, 2006b: Analysis of uncertainties in SEVIRI cloud property retrievals for climate monitoring, Preprints, 12th Conf. on Atmospheric Radiation, Madison, WI, Amer. Meteor. Soc., P4.51. [Available online at http://ams.confex.com/ams/pdfpapers/112865.pdf.].

    • Search Google Scholar
    • Export Citation
  • Roebeling, R. A., H. M. Deneke, and A. J. Feijt, 2008: Validation of cloud liquid water path retrievals from SEVIRI using one year of CloudNET observations. J. Appl. Meteor. Climatol., 47 , 206–222.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and B. Cairns, 1995: Monitoring changes of clouds. Climatic Change, 31 , 175–217.

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 2261–2287.

  • Stammes, P., 2001: Spectral radiance modeling in the UV-visible range. IRS 2000: Current Problems in Atmospheric Radiation, W. L. Smith and Y. M. Timofeyev, Eds., A. Deepak, 385–388.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., G. W. Paltridge, and C. M. R. Platt, 1978: Radiation profiles in extended water clouds. III: Observations. J. Atmos. Sci., 35 , 2133–2141.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 132A , 476–490.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 2961–3012.

  • van Meijgaard, E., and S. Crewell, 2005: Comparison of model predicted liquid water path with ground-based measurements during CLIWA-NET. Atmos. Res., 75 , 201–226.

    • Search Google Scholar
    • Export Citation
  • van Meijgaard, E., L. H. van Ulft, W. J. van de Berg, F. C. Bosveld, B. J. J. M. van den Hurk, G. Lenderink, and A. P. Siebesma, 2008: The KNMI regional atmospheric climate model RACMO, version 2.1. KNMI Tech. Rep. 302, 43 pp.

    • Search Google Scholar
    • Export Citation
  • van Zadelhoff, G-J., A. J. Heymsfield, D. P. Donovan, and M. J. McGill, 2007: Evaluating lidar–radar microphysics retrieval using in situ measurements. J. Geophys. Res., 112 , D09213. doi:10.1029/2006JD007202.

    • Search Google Scholar
    • Export Citation
  • Weng, F., N. C. Grody, R. R. Ferraro, A. Basist, and D. Forsyth, 1997: Cloud liquid water climatology from the special sensor microwave imager. J. Climate, 10 , 1086–1096.

    • Search Google Scholar
    • Export Citation
  • White, P. W., Ed. 2003: Physical processes. ECMWF IFS documentation cycle CY23r4, 166 pp. [Available online at http://www.ecmwf.int/research/ifsdocs_old/pdf_files/Physics.pdf.].

    • Search Google Scholar
    • Export Citation
  • Wolters, E. L. A., R. A. Roebeling, and A. J. Feijt, 2008: Evaluation of cloud-phase retrieval methods for SEVIRI on Meteosat-8 using ground-based lidar and cloud radar data. J. Appl. Meteor. Climatol., 47 , 1723–1738.

    • Search Google Scholar
    • Export Citation
  • Wood, R., C. S. Bretherton, and D. L. Hartmann, 2002: Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophys. Res. Lett., 29 , 2092. doi:10.1029/2002GL015371.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 617 407 16
PDF Downloads 129 46 2