Simulations of Hydrographic Properties in the Northwestern North Atlantic Ocean in Coupled Climate Models

M. F. de Jong Royal Netherlands Institute for Sea Research, Den Burg, Netherlands

Search for other papers by M. F. de Jong in
Current site
Google Scholar
PubMed
Close
,
S. S. Drijfhout Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by S. S. Drijfhout in
Current site
Google Scholar
PubMed
Close
,
W. Hazeleger Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by W. Hazeleger in
Current site
Google Scholar
PubMed
Close
,
H. M. van Aken Royal Netherlands Institute for Sea Research, Den Burg, Netherlands

Search for other papers by H. M. van Aken in
Current site
Google Scholar
PubMed
Close
, and
C. A. Severijns Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by C. A. Severijns in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The performance of coupled climate models (CCMs) in simulating the hydrographic structure and variability of the northwestern North Atlantic Ocean, in particular the Labrador and Irminger Seas, has been assessed. This area plays an important role in the meridional overturning circulation. Hydrographic properties of the preindustrial run of eight CCMs used in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) are compared with observations from the World Ocean Circulation Experiment Repeat section 7 (WOCE AR7). The mean and standard deviation of 20 yr of simulated data are compared in three layers, representing the surface waters, intermediate waters, and deep waters. Two models simulate an extremely cold, fresh surface layer with model biases down to −1.7 psu and −4.0°C, much larger than the observed ranges of variability. The intermediate and deep layers are generally too warm and saline, with biases up to 0.7 psu and 2.8°C. An analysis of the maximum mixed layer depth shows that the low surface salinity is related to a convective regime restricted to the upper 500 dbar. Thus, intermediate water formed by convection is partly replaced by warmer water from the south. Model biases seem to be caused by the coupling to the atmospheric component of the CCM. Model drift during long spinup periods allows the initially small biases in water mass characteristics to become significant. Biases that develop in the control run are carried over to the twentieth-century runs, which are initialized from the control runs.

Corresponding author address: M. F. de Jong, Royal Netherlands Institute for Sea Research, Landsdiep 4, 1797 SZ, Den Burg, Netherlands.Email: jong@nioz.nl

Abstract

The performance of coupled climate models (CCMs) in simulating the hydrographic structure and variability of the northwestern North Atlantic Ocean, in particular the Labrador and Irminger Seas, has been assessed. This area plays an important role in the meridional overturning circulation. Hydrographic properties of the preindustrial run of eight CCMs used in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) are compared with observations from the World Ocean Circulation Experiment Repeat section 7 (WOCE AR7). The mean and standard deviation of 20 yr of simulated data are compared in three layers, representing the surface waters, intermediate waters, and deep waters. Two models simulate an extremely cold, fresh surface layer with model biases down to −1.7 psu and −4.0°C, much larger than the observed ranges of variability. The intermediate and deep layers are generally too warm and saline, with biases up to 0.7 psu and 2.8°C. An analysis of the maximum mixed layer depth shows that the low surface salinity is related to a convective regime restricted to the upper 500 dbar. Thus, intermediate water formed by convection is partly replaced by warmer water from the south. Model biases seem to be caused by the coupling to the atmospheric component of the CCM. Model drift during long spinup periods allows the initially small biases in water mass characteristics to become significant. Biases that develop in the control run are carried over to the twentieth-century runs, which are initialized from the control runs.

Corresponding author address: M. F. de Jong, Royal Netherlands Institute for Sea Research, Landsdiep 4, 1797 SZ, Den Burg, Netherlands.Email: jong@nioz.nl

Save
  • Bacon, S., W. J. Gould, and Y. Jia, 2003: Open-ocean convection in the Irminger Sea. Geophys. Res. Lett., 30 , 1246. doi:10.1029/2002GL016271.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., and Coauthors, 2007: Eddy-permitting ocean circulation hindcasts of past decades. CLIVAR Exchanges, No. 42, International CLIVAR Project Office, Southampton, United Kingdom, 8–10.

    • Search Google Scholar
    • Export Citation
  • Brambilla, E., and L. D. Talley, 2008: Subpolar Mode Water in the northeastern Atlantic: 1. Averaged properties and mean circulation. J. Geophys. Res., 113 , C04025. doi:10.1029/2006JC004062.

    • Search Google Scholar
    • Export Citation
  • Brambilla, E., L. D. Talley, and P. E. Robbins, 2008: Subpolar Mode Water in the northeastern Atlantic: 2. Origin and transformation. J. Geophys. Res., 113 , C04026. doi:10.1029/2006JC004063.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., B. S. Giese, and S. A. Grodsky, 2005: Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J. Geophys. Res., 110 , C09006. doi:10.1029/2004JC002817.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., J. Meincke, S-A. Malmberg, and A. J. Lee, 1988: The “great salinity anomaly” in the northern North Atlantic 1968–1982. Prog. Oceanogr., 20 , 103151.

    • Search Google Scholar
    • Export Citation
  • Donners, J., S. S. Drijfhout, and W. Hazeleger, 2005: Water mass transformation and subduction in the South Atlantic. J. Phys. Oceanogr., 35 , 18411860.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., W. Hazeleger, F. Selten, and R. Haarsma, 2007: Future changes in internal variability of the Atlantic meridional overturning circulation. Climate Dyn., 30 , 407419. doi:10.1007/s00382-007-0297-y.

    • Search Google Scholar
    • Export Citation
  • Furevik, T., M. Bentsen, H. Drange, I. K. T. Kindem, N. G. Kvamstø, and A. Sorteberg, 2003: Description and evaluation of the Bergen climate model: ARPEGE coupled with MICOM. Climate Dyn., 21 , 2751.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transport in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16 , 147168.

    • Search Google Scholar
    • Export Citation
  • Haine, T., and Coauthors, 2008: North Atlantic Deep Water formation in the Labrador Sea, recirculation through the subpolar gyre, and discharge to the subtropics. Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, R. Dickson, J. Meincke, and P. Rhines, Eds., Springer, 653–702.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., and S. Emori, 2004: K-1 coupled GLM (MIROC) description. Center for Climate System Research K-1 Tech. Rep. 1, 39 pp.

  • Hendry, R. M., H. van Aken, and I. Yashayaev, 2007: Monitoring the ventilation of the Irminger and Labrador Seas. CLIVAR Exchanges, No. 40, International CLIVAR Project Office, Southampton, United Kingdom, 25–27.

    • Search Google Scholar
    • Export Citation
  • Holliday, N. P., A. Meyer, S. Bacon, S. G. Alderson, and B. de Cuevas, 2007: Retroflection of part of the east Greenland current at Cape Farewell. Geophys. Res. Lett., 34 , L07609. doi:10.1029/2006GL029085.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation regional temperatures and precipitation. Science, 269 , 676679.

    • Search Google Scholar
    • Export Citation
  • Johns, T., and Coauthors, 2004: HadGEM1—Model description and analysis of preliminary experiments for the IPCC Fourth Assessment Report. Hadley Centre Tech. Note 55, 75 pp.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., and R. Marsh, 2005: Surface freshwater flux variability and recent freshening of the North Atlantic in the eastern subpolar gyre. J. Geophys. Res., 110 , C05008. doi:10.1029/2004JC002521.

    • Search Google Scholar
    • Export Citation
  • Katsman, C. A., M. A. Spall, and R. S. Pickart, 2004: Boundary current eddies and their role in the restratification of the Labrador Sea. J. Phys. Oceanogr., 34 , 19671983.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., D. Stammer, B. Cornuelle, E. Remy, Y. Lu, P. Heimbach, and C. Wunsch, 2003: The global 1° WOCE synthesis: 1992–2001. The ECCO Report Series, Rep. 20, 33 pp.

    • Search Google Scholar
    • Export Citation
  • Lazier, J., R. Hendry, A. Clarke, I. Yashayaev, and P. Rhines, 2002: Convection and restratification in the Labrador Sea, 1990–2000. Deep-Sea Res. I, 49 , 18191835.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., R. Burgett, and T. P. Boyer, 1995: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Levitus, S., and Coauthors, 1998: Introduction. Vol. 1, World Ocean Database, NOAA Atlas NESDIS 18, 346 pp.

  • Lilly, J. M., P. B. Rhines, F. Schott, K. Lavender, J. Lazier, U. Send, and E. D’Asaro, 2003: Observations of the Labrador Sea eddy field. Prog. Oceanogr., 59 , 75176.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pôle de Modélisation 27, Institut Pierre-Simon Laplace, 209 pp.

  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory and models. Rev. Geophys., 37 , 164.

  • Marshall, J., and Coauthors, 2001: North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol., 21 , 18631898. doi:10.1002/joc.693.

    • Search Google Scholar
    • Export Citation
  • Marti, O., and Coauthors, 2005: The new IPSL climate system model: IPSL-CM4. Institut Pierre-Simon Laplace Note du Pôle de Modélisation 26, 79 pp.

    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., and L. D. Talley, 1982: The Subpolar Mode Water of the North Atlantic. J. Phys. Oceanogr., 12 , 11691188.

  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset. Bull. Amer. Meteor. Soc., 88 , 13831394.

    • Search Google Scholar
    • Export Citation
  • Myers, P. G., S. A. Josey, B. Wheler, and N. Kulan, 2007: Interdecadal variability in Labrador Sea precipitation minus evaporation and salinity. Prog. Oceanogr., 73 , 341357. doi:10.1016/j.pocean.2006.06.003.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., F. Straneo, and G. W. K. Moore, 2003: Is Labrador Sea water formed in the Irminger basin? Deep-Sea Res. I, 50 , 2352.

  • Pickart, R. S., K. Våge, G. W. K. Moore, I. A. Renfrew, M. H. Ribergaard, and H. C. Davies, 2008: Convection in the western North Atlantic sub-polar gyre: Do small scale wind events matter? Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, R. Dickson, J. Meincke, and P. Rhines, Eds., Springer, 629–652.

    • Search Google Scholar
    • Export Citation
  • Salas-Mélia, D., and Coauthors, 2005: Description and validation of the CNRM-CM3 global coupled model. Centre National de Recherches Météorologiques Note 103, 36 pp.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., M. Latif, and B. Schneider, 2005: Model projection of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett., 32 , L23710. doi:10.1029/2005GL024368.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and I. V. Kamenkovich, 2007: Simulation of SubAntarctic Mode and Antarctic Intermediate Waters in climate models. J. Climate, 20 , 50615080.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Tanhua, T., K. Bulsiewicz, and M. Rhein, 2005: Spreading of overflow water from the Greenland to the Labrador Sea. Geophys. Res. Lett., 32 , L10605. doi:10.1029/2005GL022700.

    • Search Google Scholar
    • Export Citation
  • van Aken, H. M., 2007: The Oceanic Thermohaline Circulation: An Introduction. Springer, 326 pp.

  • van Aken, H. M., and C. J. de Boer, 1995: On the synoptic hydrography of intermediate and deep water masses in the Iceland Basin. Deep-Sea Res. I, 42 , 165189.

    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., 2005: Interannual variability of the altimetry-derived eddy field and surface circulation in the extratropical North Atlantic Ocean in 1993–2001. J. Phys. Oceanogr., 35 , 405426.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., 2007: Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr., 73 , 242276.

  • Yashayaev, I., M. Bersch, and H. M. van Aken, 2007: Spreading of the Labrador Sea Water to the Irminger and Iceland basins. Geophys. Res. Lett., 34 , L10602. doi:10.1029/2006GL028999.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., N. P. Holliday, M. Bersch, and H. M. van Aken, 2008: The history of the Labrador Sea Water: Production, spreading, transformation and loss. Arctic–Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, R. Dickson, J. Meincke, and P. Rhines, Eds., Springer, 569–612.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1727 1389 540
PDF Downloads 128 49 27