An Analysis of ENSO Prediction Skill in the CFS Retrospective Forecasts

Renguang Wu Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Renguang Wu in
Current site
Google Scholar
PubMed
Close
,
Ben P. Kirtman Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Ben P. Kirtman in
Current site
Google Scholar
PubMed
Close
, and
Huug van den Dool Climate Prediction Center, National Centers for Environmental Prediction, Camp Springs, Maryland

Search for other papers by Huug van den Dool in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The present study documents the so-called spring prediction and persistence barriers in association with El Niño–Southern Oscillation (ENSO) in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) retrospective forecasts. It is found that the spring prediction and persistence barriers in the eastern equatorial Pacific sea surface temperature (SST) are preceded by a boreal winter barrier in the western equatorial Pacific zonal wind stress. The time of the persistence barrier is closely related to the time of the ENSO phase transition, but may differ from the time of the lowest variance. The seasonal change of the signal-to-noise ratio cannot explain the persistence barrier. While the noise may lead to a drop of skill around boreal spring in the western equatorial Pacific zonal wind stress, its impacts on the skill of eastern equatorial Pacific SST is small. The equatorial Pacific zonal winds display an excessive response to ENSO-related SST anomalies, which leads to a longer persistence in the equatorial Pacific thermocline depth anomalies and a delayed transition of the eastern equatorial Pacific SST anomalies. This provides an interpretation for the prediction skill drop in boreal spring in the eastern equatorial Pacific SST. The results suggest that improving the atmospheric model wind response to SST anomalies may reduce the spring prediction barrier.

Corresponding author address: Renguang Wu, COLA, IGES, 4041 Powder Mill Rd., Suite 302, Calverton, MD 20705. Email: renguang@cola.iges.org

Abstract

The present study documents the so-called spring prediction and persistence barriers in association with El Niño–Southern Oscillation (ENSO) in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) retrospective forecasts. It is found that the spring prediction and persistence barriers in the eastern equatorial Pacific sea surface temperature (SST) are preceded by a boreal winter barrier in the western equatorial Pacific zonal wind stress. The time of the persistence barrier is closely related to the time of the ENSO phase transition, but may differ from the time of the lowest variance. The seasonal change of the signal-to-noise ratio cannot explain the persistence barrier. While the noise may lead to a drop of skill around boreal spring in the western equatorial Pacific zonal wind stress, its impacts on the skill of eastern equatorial Pacific SST is small. The equatorial Pacific zonal winds display an excessive response to ENSO-related SST anomalies, which leads to a longer persistence in the equatorial Pacific thermocline depth anomalies and a delayed transition of the eastern equatorial Pacific SST anomalies. This provides an interpretation for the prediction skill drop in boreal spring in the eastern equatorial Pacific SST. The results suggest that improving the atmospheric model wind response to SST anomalies may reduce the spring prediction barrier.

Corresponding author address: Renguang Wu, COLA, IGES, 4041 Powder Mill Rd., Suite 302, Calverton, MD 20705. Email: renguang@cola.iges.org

Save
  • Balmaseda, M. A., D. L. T. Anderson, and M. K. Davey, 1994: ENSO prediction using a dynamical ocean model coupled to statistical atmospheres. Tellus, 46A , 497511.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., M. K. Davey, and D. L. T. Anderson, 1995: Decadal and seasonal dependence of ENSO prediction skill. J. Climate, 8 , 27052715.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and Coauthors, 1994: Long-lead seasonal forecasts—Where do we stand? Bull. Amer. Meteor. Soc., 75 , 20972114.

  • Blumenthal, M. B., 1991: Predictability of a coupled ocean–atmosphere model. J. Climate, 4 , 766784.

  • Branstator, G., 1986: The variability in skill of 72-hour global-scale NMC forecasts. Mon. Wea. Rev., 114 , 26282639.

  • Burgers, G., F-F. Jin, and G. J. van Oldenborgh, 2005: A simplest ENSO recharge oscillator. Geophys. Res. Lett., 32 , L13706. doi:10.1029/2005GL022951.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. Chepurin, X. Cao, and B. Geise, 2000: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30 , 294309.

    • Search Google Scholar
    • Export Citation
  • Chen, D., S. E. Zebiak, A. J. Busalacchi, and M. A. Cane, 1995: An improved procedure for El Niño forecasting. Science, 269 , 16991702.

    • Search Google Scholar
    • Export Citation
  • Chen, D., S. E. Zebiak, M. A. Cane, and A. J. Busalacchi, 1997: Initialization and predictability of a coupled ENSO forecast model. Mon. Wea. Rev., 125 , 773788.

    • Search Google Scholar
    • Export Citation
  • Chen, J-M., T. Li, and C-F. Shih, 2007: Fall persistence barrier of sea surface temperature in the South China Sea associated with ENSO. J. Climate, 20 , 158172.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and S. Van Gorder, 1999: The connection between the boreal spring Southern Oscillation persistence barrier and biennial variability. J. Climate, 12 , 612620.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and L. Shu, 2000: Quasi-biennial winds in the far western equatorial Pacific phase-locking El Niño to the seasonal cycle. Geophys. Res. Lett., 27 , 771774.

    • Search Google Scholar
    • Export Citation
  • DeWitt, D. G., 2005: Retrospective forecasts of interannual sea surface temperature anomalies from 1982 to present using a directly coupled atmosphere–ocean general circulation model. Mon. Wea. Rev., 133 , 29722995.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and J. J. O’Brien, 1981: Time and space variability of tropical Pacific wind stress. Mon. Wea. Rev., 109 , 11901207.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and J. Shukla, 1991: Predictability of a coupled ocean–atmosphere model. J. Climate, 4 , 322.

  • Hendon, H. H., 2003: Indonesia rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16 , 17751790.

  • Jin, E. K., and J. L. Kinter III, 2009: Characteristics of tropical Pacific SST predictability in coupled GCM forecasts using the NCEP CFS. Climate Dyn., 32 , 675691. doi:10.1007/s00382-008-0418-2.

    • Search Google Scholar
    • Export Citation
  • Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31 , 647664.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., 1997: Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Climate, 10 , 16901705.

  • Kirtman, B. P., J. Shukla, B. Huang, Z. Zhu, and E. K. Schneider, 1997: Multi-seasonal prediction with a coupled tropical ocean–global atmosphere system. Mon. Wea. Rev., 125 , 789808.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., J. Shukla, M. Balmaseda, N. Graham, C. Penland, Y. Xue, and S. Zebiak, 2001: Current status of ENSO forecast skill: A report to the Climate Variability and Predictability (CLIVAR) Numerical Experimentation Group (NEG). WCRP Informal Rep. 23/01, 31 pp. [Available online at http://www.clivar.org/publications/wg_reports/wgsip/nino3/report.htm.].

    • Search Google Scholar
    • Export Citation
  • Kug, J-S., and I-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19 , 17841801.

  • Kug, J-S., S-I. An, F-F. Jin, and I-S. Kang, 2005: Preconditions for El Niño and La Niña onsets and their relation to the Indian Ocean. Geophys. Res. Lett., 32 , L05706. doi:10.1029/2004GL021674.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103 , 1437514393.

  • Lau, K-M., and S. Yang, 1996: The Asian monsoon and predictability of the tropical ocean–atmosphere system. Quart. J. Roy. Meteor. Soc., 122 , 945957.

    • Search Google Scholar
    • Export Citation
  • Mayer, D. A., and R. H. Weisberg, 1998: El Niño-Southern Oscillation-related ocean–atmosphere coupling in the western equatorial Pacific. J. Geophys. Res., 103 , (C9). 1863518648.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30 , 1480. doi:10.1029/2003GL016872.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean–Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103 , (C7). 1416914240.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13 , 35513559.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Quart. J. Roy. Meteor. Soc., 122 , 14051446.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., H-L. Pan, and P. Caplan, 2001: Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. Technical Procedures Bulletin 484, NWS Office of Meteorology, 14 pp. [Available online at http://www.weather.gov/om/tpb/484.pdf.].

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., M. Latif, and F-F. Jin, 1994: Dynamics of coupled ocean–atmosphere models: The tropical problem. Annu. Rev. Fluid Mech., 26 , 617659.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1998: MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory, 638 pp.

  • Philander, S. G. H., 1990: El Niño, La Niña and the Southern Oscillation. Academic Press, 293 pp.

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19 , 34833517.

  • Schneider, E. K., D. G. DeWitt, A. Rosati, B. P. Kirtman, L. Ji, and J. J. Tribbia, 2003: Retrospective ENSO forecasts: Sensitivity to atmospheric model and ocean resolution. Mon. Wea. Rev., 131 , 30383060.

    • Search Google Scholar
    • Export Citation
  • Smith, T., A. G. Barnston, M. Ji, and M. Chelliah, 1995: The impact of Pacific Ocean subsurface data on operational prediction of tropical Pacific SST at the NCEP. Wea. Forecasting, 10 , 708714.

    • Search Google Scholar
    • Export Citation
  • Stan, C., and B. P. Kirtman, 2008: The influence of atmospheric noise and uncertainty in ocean initial conditions on the limit of predictability in a coupled GCM. J. Climate, 21 , 34873503.

    • Search Google Scholar
    • Export Citation
  • Terray, P., and S. Dominiak, 2005: Indian Ocean sea surface temperature and El Niño–Southern Oscillation: A new perspective. J. Climate, 18 , 13511368.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and P. J. Webster, 1998: The annual cycle of persistence in the El Niño/Southern Oscillation. Quart. J. Roy. Meteor. Soc., 124 , 19852004.

    • Search Google Scholar
    • Export Citation
  • Troup, A. J., 1965: The “Southern Oscillation.”. Quart. J. Roy. Meteor. Soc., 91 , 490506.

  • Van den Dool, H. M., and Z. Toth, 1991: Why do forecasts for “near normal” often fail? Wea. Forecasting, 6 , 7685.

  • Van der Vaart, P. C. F., H. A. Dijkstra, and F. F. Jin, 2000: The Pacific cold tongue and the ENSO mode: A unified theory within the Zebiak–Cane model. J. Atmos. Sci., 57 , 967988.

    • Search Google Scholar
    • Export Citation
  • Van Oldenborgh, G. J., M. A. Balmaseda, L. Ferranti, T. N. Stockdale, and D. L. T. Anderson, 2005: Did the ECMWF seasonal forecast model outperform statistical ENSO forecasts models over the last 15 years? J. Climate, 18 , 32403249.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., 2007: Seasonal-to-interannual forecasting of tropical Indian Ocean sea surface temperature anomalies: Potential predictability and barriers. J. Climate, 20 , 33203343.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and R. Lukas, 1999: Roles of the western North Pacific wind variation in thermocline adjustment and ENSO phase transition. J. Meteor. Soc. Japan, 77 , 116.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13 , 15171536.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on the Asian–Australian monsoon variation. J. Climate, 16 , 11951211.

    • Search Google Scholar
    • Export Citation
  • Wang, W., S. Saha, H-L. Pan, S. Nadiga, and G. White, 2005: Simulation of ENSO in the new NCEP Coupled Forecast System Model (CFS03). Mon. Wea. Rev., 133 , 15741593.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1995: The annual cycle and predictability of the tropical coupled ocean–atmosphere system. Meteor. Atmos. Phys., 56 , 3355.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118 , 877926.

  • Weisberg, R. H., and C. Wang, 1997a: Slow variability in the equatorial west-central Pacific in relation to ENSO. J. Climate, 10 , 19982017.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and C. Wang, 1997b: A western Pacific oscillator paradigm for the El Niño–Southern Oscillation. Geophys. Res. Lett., 24 , 779782.

    • Search Google Scholar
    • Export Citation
  • Wright, P. B., 1985: The Southern Oscillation: An ocean–atmosphere feedback system? Bull. Amer. Meteor. Soc., 66 , 398412.

  • Wu, R., and B. P. Kirtman, 2004: Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17 , 40194031.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2007: Roles of the Indian Ocean in the Australian summer monsoon–ENSO relationship. J. Climate, 20 , 47684788.

    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and K. Pegion, 2006: Local air–sea relationship in observations and model simulations. J. Climate, 19 , 49144932.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. A. Cane, S. E. Zebiak, and M. B. Blumenthal, 1994: On the prediction of ENSO: A study with a low-order Markov model. Tellus, 46A , 512528.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., A. Leetmaa, and M. Ji, 2000: ENSO prediction with Markov models: The impact of sea level. J. Climate, 13 , 849871.

  • Yu, J-Y., 2005: Enhancement of ENSO’s persistence barrier by biennial variability in a coupled atmosphere–ocean general circulation model. Geophys. Res. Lett., 32 , L13707. doi:10.1029/2005GL023406.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1989: Ocean heat content variability and ENSO cycle. J. Phys. Oceanogr., 19 , 475485.

  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 22622278.

  • Zelle, H., G. J. van Oldenborgh, G. Burgers, and H. Dijkstra, 2005: El Niño and greenhouse warming: Results from ensemble simulations with the NCAR CCSM. J. Climate, 18 , 46694683.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 782 539 175
PDF Downloads 196 60 3